
Advanced Micro Devices

Advanced Media Framework – Display Capture

Programming Guide

Disclaimer

The information contained herein is for informational purposes only, and is subject to change without notice. While every
precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and
typographical errors, and AMD is under no obligation to update or otherwise correct this information.

Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other
products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by
this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed
agreement between the parties or in AMD's Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, ATI Radeon™, CrossFireX™, LiquidVR™, TrueAudio™ and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

Windows™, Visual Studio and DirectX are trademark of Microsoft Corp.

Copyright Notice

© 2022 Advanced Micro Devices, Inc. All rights reserved

Notice Regarding Standards. AMD does not provide a license or sublicense to any Intellectual Property Rights relating to any
standards, including but not limited to any audio and/or video codec technologies such as MPEG-2, MPEG-4; AVC/H.264;
HEVC/H.265; AAC decode/FFMPEG; AAC encode/FFMPEG; VC-1; and MP3 (collectively, the “Media Technologies”). For clarity,
you will pay any royalties due for such third party technologies, which may include the Media Technologies that are owed as a
result of AMD providing the Software to you.

MIT license

Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Contents

1. Introduction
2. Display Capture Programming Model

2.1 Creating the Display Capture Component
2.2 Initializing the Display Capture Component
2.3 Querying for Output
2.4 Shutting Down Display Capture
2.5 Capture modes

1 Introduction

The AMD Advanced Media Framework (AMF) includes functionality for display capture to facilitate various streaming solutions in
remote display, network game streaming and other applications. The display capture function is designed to work in conjunction
with other AMF components, such as H.264, H.265 and AV1 encoders and color space converter.

AMF currently offers two components to perform display capture. One legacy component is using the Microsoft DXGI Desktop
Duplication API (DD), while the new component utilizes an AMD’s proprietary API to perform screen capture. The new display
capture API is not available in legacy drivers, however it provides a more efficient way to perform display capture with lower
latency and lower impact on the CPU and GPU performance. It is therefore recommended to use the new API for solutions
where compatibility with legacy drivers is not required.

Functionally both methods are equivalent and implement the same API. The legacy DD component is available in the source
code form as a sample.

Note: The Display Capture API requires root or super user privileges when running on Linux systems.

2 Display Capture Programming Model

AMF provides a standard component implementing the AMFComponent interface to perform display capture. For more
information about the AMFComponent interface please refer to Section 2.6.1 of the AMF API Reference.

The Display Capture component is a source and does not take any input.

2.1 Creating the Display Capture Component

To create an instance of the Display Capture component, call the AMFFactory::CreateComponent() method passing
AMFDisplayCapture as parameter. Include the public/include/components/DisplayCapture.h header.

The open source legacy Display Capture component based on the Microsoft DXGI Desktop Duplication API is included in the
AMF samples in form of source code. It can be created by calling the AMFCreateComponentDisplayCapture function defined in
public/src/components/DisplayCapture/DisplayCaptureImpl.cpp . Refer to the public DVR sample for details.

2.2 Initializing the Display Capture Component

The Display Capture component is initialized by calling the AMFComponent::Init method. Prior to calling AMFComponent::Init a
number of properties must be set on the component object using the AMFPropertyStorage::SetProperty method:

Name Type

AMF_DISPLAYCAPTURE_MONITOR_INDEX amf_int64

AMF_DISPLAYCAPTURE_FRAMERATE AMFRate

Table 1. Properties of the SetProperty method

Name: AMF_DISPLAYCAPTURE_MONITOR_INDEX

Values: IDXGIFactory::EnumAdapters for Windows, index on libdrm display enumeration on Linux

Default Value: 0

Description: A monitor index to capture, determined by calling IDXGIFactory::EnumAdapters , 0 specifies the default monitor.

Name: AMF_DISPLAYCAPTURE_FRAMERATE

Values: Desired capture output framerate for FRAMERATE mode

Default Value: (0,1)

Description: Frame rate to perform the capture at. Setting the numerator to 0 causes the capture to be performed at the rate
defined by either the application’s flip frequency (for full-screen applications) or by DWM (for windows applications).

You can implement custom control of timestamps on each captured frame by providing a custom implementation of the
AMFCurrentTime interface defined in public/include/core/CurrentTime.h and assigning it to the
AMF_DISPLAYCAPTURE_CURRENT_TIME_INTERFACE property. By default, when the AMF_DISPLAYCAPTURE_CURRENT_TIME_INTERFACE

property is not set, timestamps are assigned the value returned by amf_high_precision_clock() function at the time when a
frame is captured.

Once the properties are set, call the AMFComponent::Init method. Pass AMF_SURFACE_UNKNOWN for format and zeros for width
and height .

Once successfully initialized, the Display Capture component can be queried for output.

Upon initialization, the following properties can be read using the AMFPropertyStorage::GetProperty method:

Name Type

AMF_DISPLAYCAPTURE_FORMAT amf_int64

AMF_DISPLAYCAPTURE_RESOLUTION AMFSize

AMF_DISPLAYCAPTURE_ROTATION AMF_ROTATION_ENUM

Table 2. Properties of GetProperty method

Name: AMF_DISPLAYCAPTURE_FORMAT

Values: AMF_SURFACE_FORMAT

Default Value: N/A

Description: Capture format (AMF_SURFACE_FORMAT).

Name: AMF_DISPLAYCAPTURE_RESOLUTION

Values: A valid size.

Default Value: N/A or (0,0)

Description: Captured image resolution; An output parameter representing actual screen/display size.

Name: AMF_DISPLAYCAPTURE_ROTATION

Values: AMF_ROTATION_ENUM : AMF_ROTATION_NONE , AMF_ROTATION_90 , AMF_ROTATION_180 , AMF_ROTATION_270

Default Value: AMF_ROTATION_NONE

Description: Rotation of monitor being captured, AMF_ROTATION_NONE by default.

2.3 Querying for Output

The output of the Display Capture component can be obtained by calling the AMFComponent::QueryOutput method in a loop. The
loop needs to run fast enough to sustain the frame rate set during initialization using the AMF_DISPLAYCAPTURE_FRAMERATE
property. When a frame is available, AMFComponent::QueryOutput places a pointer to the AMFSurface object at the location
pointed to by the ppData parameter. When no new frame is available yet, ppData is set to NULL and
AMFComponent::QueryOutput returns AMF_REPEAT .

As with any other AMF component, it is recommended to run the polling loop in a separate thread. Whenever
AMFComponent::QueryOutput returns AMF_REPEAT , the polling thread should be put to sleep for at least 1 ms to avoid high CPU

utilization.

The AMFSurface object containing a captured frame that was obtained from AMFComponent::QueryOutput can be used as input
for the next component in the pipeline.

The capture contained in the returned AMFSurface can also be modified with the following properties:

AMF_DISPLAYCAPTURE_DUPLICATEOUTPUT , of type amf_bool , false by default. If set, the frame returned in the AMFSurface object
will be a copy the last captured output.

AMF_DISPLAYCAPTURE_ENABLE_DIRTY_RECTS , of type amf_bool , false by default. If set, dirty rectangles indicating changed areas in
frame since last output are attached to the returned AMFSurface as the property AMF_DISPLAYCAPTURE_DIRTY_RECTS (See Section
2.5).

AMF_DISPLAYCAPTURE_DRAW_DIRTY_RECTS , of type amf_bool , false by default. If set, the captured output in the AMFSurface will
have the dirty rectangles drawn in red. For debugging purposes only.

2.4 Shutting Down Display Capture

To stop display capture, call AMFComponent::Drain . You can exit the polling loop and terminate the polling thread once
AMFComponent::QueryOutput returns AMF_EOF .

Call AMFComponent::Terminate and release the pointer to the Display Capture component.

2.5 Capture modes

Application can select three capture modes by setting AMF_DISPLAYCAPTURE_MODE into one of three modes:

Name Type

AMF_DISPLAYCAPTURE_MODE_KEEP_FRAMERATE AMF_DISPLAYCAPTURE_MODE_ENUM

AMF_DISPLAYCAPTURE_MODE_WAIT_FOR_PRESENT AMF_DISPLAYCAPTURE_MODE_ENUM

AMF_DISPLAYCAPTURE_MODE_GET_CURRENT_SURFACE AMF_DISPLAYCAPTURE_MODE_ENUM

Table 3. AMF Capture modes

Name: AMF_DISPLAYCAPTURE_MODE_KEEP_FRAMERATE

Value: 0

Description: Component will keep requested framerate, repeating frame if new present didn’t happen

Name: AMF_DISPLAYCAPTURE_MODE_WAIT_FOR_PRESENT

Value: 1

Description: Component returns captured frame with presentation rate: DWM or full screen app.

Name: AMF_DISPLAYCAPTURE_MODE_GET_CURRENT_SURFACE

Value: 2

Description: Component returns current frame immediately.

If available, the output surface will have the following properties:

Name Type

AMF_DISPLAYCAPTURE_FRAME_INDEX amf_int64

AMF_DISPLAYCAPTURE_FRAME_FLIP_TIMESTAMP amf_int64

AMF_DISPLAYCAPTURE_DIRTY_RECTS AMFBufferPtr

Table 4. Output surface properties

Name: AMF_DISPLAYCAPTURE_FRAME_INDEX

Values: <= 0

Default Value: 0

Description: Index of present call for the current captured frame starting from beginning of capture.

Name: AMF_DISPLAYCAPTURE_FRAME_FLIP_TIMESTAMP

Values: <= 0

Default Value: 0

Description: Flip timestamp of the presented frame acquired by QueryPerformanceCounter() .

Name: AMF_DISPLAYCAPTURE_DIRTY_RECTS

Values: AMFBufferPtr

Default Value: N/A

Description: Array of AMFRect objects indicating changed areas on the captured surface since the last capture. The structure of
AMFRect can be found in public/include/core/Platform.h .

Name: AMF_DISPLAY_CAPTURE_DCC

Values: true or false

Default Value: N/A

Description: Set to true when DCC compression is enabled on the output surface.

