
Extensible Storage Engine (ESE) Database File (EDB)
format specification

Analysis of the Extensible Storage Engine (ESE) Database File (EDB) format

By Joachim Metz <joachim.metz@gmail.com>



Summary
The Extensible Storage Engine (ESE) Database File (EDB) format is used by many Microsoft 
application to store data such as Windows Mail, Windows Search, Active Directory and Exchange. 
This specification is based on some available documentation but mainly on reverse engineering of the 
file format.

This document is intended as a working document for the Extensible Storage Engine (ESE) 
Database File (EDB) format specification. Which should allow existing Open Source forensic tooling 
to be able to process this file type.

page i



Document information
Author(s): Joachim Metz <joachim.metz@gmail.com>

Abstract: This document contains information about the Extensible Storage Engine 
Database File format

Classification: Public

Keywords: Extensible Storage Engine, ESE, ESENT, EDB

License
Copyright (c)  2009-2012  Joachim Metz <joachim.metz@gmail.com>
Permission is granted to copy, distribute and/or modify this document under 
the terms of the GNU Free Documentation License, Version 1.3 or any later 
version published by the Free Software Foundation; with no Invariant Sections, 
no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is 
included in the section entitled "GNU Free Documentation License".

Version
Version Author Date Comments

0.0.1 J.B. Metz September 2009
October 2009

Worked on initial version.

0.0.2 J.B. Metz October 5, 2009
October 6, 2009

Added information about page B+-trees.

0.0.3 J.B. Metz October 8, 2009 Added information about tagged data types for EDB revision 2.

0.0.4 J.B. Metz November 16, 2009
November 18, 2009

Additional information about indexes, page flags, 
MSysDefrag2 table.

0.0.5 J.B. Metz February 22, 2010 Additional Windows 7 Search information.

0.0.6 J.B. Metz May 14, 2010 Change amount of in number of
Additional long value information.

0.0.7 J.B. Metz May 17, 2010 Additional common page key information.

0.0.8 J.B. Metz May 20, 2010
May 26, 2010

Additional information about template tables (thanks to 
J. Aloysius), root and branch pages.

0.0.9 J.B. Metz June 2010 Additional multi value information.

0.0.10 J.B. Metz July 2010 Additional index leaf page entry information.

0.0.11 J.B. Metz September 2010 Windows 7 seems to use extended page format for 32 KiB 
pages, but not for 4 KiB pages. Currently assumed that 16 KiB 
pages also use the extended format.

0.0.12 J.B. Metz November 2010 Additional information about streaming file.

0.0.13 J.B. Metz December 2010 License version update

0.0.14 J.B. Metz August 2011 Small addition to page value flags.

0.0.15 J.B. Metz September 2011 Addition to page flags and 7-bit Unicode compression.

0.0.16 J.B. Metz October 2011 Updates for space tree leaf page entry, 7-bit and XPRESS 
compression, scrubbed page flags.

page ii



Version Author Date Comments

0.0.17 J.B. Metz October 2011 Textual changes.

0.0.18 J.B. Metz May 2012 Updates for Windows 8 Consumer Preview.

0.0.19 J.B. Metz July 2012 Email update.

page iii



Table of Contents
1. Overview...........................................................................................................................................1

1.1. Test version...............................................................................................................................1
1.2. File structure.............................................................................................................................1

2. (Database) file header.......................................................................................................................2
2.1. File type.....................................................................................................................................6
2.2. File format version and revision................................................................................................6
2.3. Database state...........................................................................................................................7

3. Hierarchical page-based storage.......................................................................................................8
3.1. Page header...............................................................................................................................8

3.1.1. Changes in Exchange 2003 SP1......................................................................................10
3.1.2. Changes in Windows 7....................................................................................................10
3.1.3. Page flags........................................................................................................................10

3.2. Page tags.................................................................................................................................11
3.2.1. Page tag - format revision 12 and earlier.........................................................................11
3.2.2. Page tag - format revision 17 and later...........................................................................11
3.2.3. Page tag flags..................................................................................................................12

3.3. Page B+-tree...........................................................................................................................12
3.3.1. Empty page......................................................................................................................12
3.3.2. Root page........................................................................................................................12

3.3.2.1. Root page header.....................................................................................................13
3.3.3. Branch page.....................................................................................................................13

3.3.3.1. Branch page header.................................................................................................13
3.3.3.2. Branch page entry....................................................................................................14

3.3.4. Leaf page values..............................................................................................................14
3.3.4.1. Leaf page header......................................................................................................14
3.3.4.2. Leaf page entry........................................................................................................15

3.3.4.2.1. Leaf page entry - format revision 17 and later.................................................15
3.4. Page values..............................................................................................................................15

3.4.1. Space tree page values....................................................................................................15
3.4.1.1. Space tree leaf page header.....................................................................................16
3.4.1.2. Space tree leaf page entry........................................................................................16

3.4.2. Index page values............................................................................................................16
3.4.2.1. Index leaf page entry data........................................................................................16

3.4.3. Long value page values...................................................................................................17
3.4.4. Table page values............................................................................................................17

4. Data definitions...............................................................................................................................17
4.1. Data definition header.............................................................................................................17
4.2. Data type definitions...............................................................................................................18

4.2.1. Variable size data type size array entry...........................................................................18
4.2.2. The tagged data type definitions - format revision 2.......................................................18
4.2.3. The tagged data type definitions - format revision 9 and later........................................19

4.2.3.1. Tagged data type offset array entry - format revision 9 and later............................19
4.2.3.2. Tagged data type flags.............................................................................................20

4.3. Example: the catalog (data type) definition.............................................................................21
4.4. Long Values............................................................................................................................22
4.5. Mutli values.............................................................................................................................23

5. Database..........................................................................................................................................25
5.1. Database signature..................................................................................................................25

5.1.1. Database time..................................................................................................................25
6. Columns..........................................................................................................................................25

page iv



6.1. Column type............................................................................................................................25
6.2. Column flags (group of bits)...................................................................................................27
6.3. Compression............................................................................................................................29

6.3.1. 7-bit compression............................................................................................................29
6.3.2. XPRESS compression.....................................................................................................30

7. Backup............................................................................................................................................30
7.1. Backup information.................................................................................................................30

8. Transaction log...............................................................................................................................31
8.1. Log information......................................................................................................................31
8.2. Log position............................................................................................................................31
8.3. (Backup) log time...................................................................................................................31

9. Tables..............................................................................................................................................32
9.1. Table flags (group of bits).......................................................................................................32
9.2. metadata tables........................................................................................................................33

9.2.1. Catalog (MSysObjects and MSysObjectsShadow)..........................................................33
9.2.1.1. Catalog types...........................................................................................................34
9.2.1.2. KeyFldIDs................................................................................................................34

9.2.2. MSysObjids.....................................................................................................................35
9.2.3. MSysLocales...................................................................................................................35
9.2.4. MSysUnicodeFixupVer1.................................................................................................35
9.2.5. MSysUnicodeFixupVer2.................................................................................................36
9.2.6. MSysDefrag1..................................................................................................................36
9.2.7. MSysDefrag2..................................................................................................................36

9.3. Template tables.......................................................................................................................37
10. Indexes..........................................................................................................................................37

10.1. Index flags (group of bits).....................................................................................................38
11. Notes.............................................................................................................................................40

11.1. The database metadata table.................................................................................................40
Appendix A. References.....................................................................................................................41
Appendix B. GNU Free Documentation License................................................................................41

page v



1. Overview
The Extensible Storage Engine (ESE) Database File (EDB) format is used by many Microsoft 
application to store data such as Windows Mail, Windows Search, Active Directory and Exchange. 
The The Extensible Storage Engine (ESE) is also known as JET Blue.

There are multiple types of ESE:
Name Usage

ESENT The database engine for Active Directory and many Microsoft Windows components. 
Unlike other versions of ESE (which use 5-MiB log files and 4-KiB page sizes), the 
Active Directory implementation of ESENT uses 10-MiB log files and 8-KiB pages.

ESE97 The database engine in Exchange Server 5.5.

ESE98 The database engine in Exchange 2000 Server, Exchange Server 2003, and Exchange 
Server 2007. Exchange 2000 and 2003 use 4-KiB page sizes and 2007 8-KiB.

ESE is used to store data for various Microsoft applications like:
• Active Directory (NTDS)
• File Replication service (FRS)
• Windows Internet Name service (WINS)
• DHCP
• Security Configuration Engine (SCE)
• Certificate Server
• Terminal Services Session folder
• Terminal Services Licensing service
• Catalog database
• Help and Support Services
• Directory Synchronization service (MSDSS)
• Remote Storage (RSS)
• Phone Book service
• Single Instance Store (SIS) Groveler
• Windows NT Backup/Restore
• Exchange store
• Microsoft Exchange folder (SRS and DXA)
• Key Management service (KMS)
• Instant Messaging
• Content Indexing

1.1. Test version

The following version of programs were used to test the information within this document:
• Exchange 2003, 2007; with corresponding eseutil
• Windows Search XP, Vista, 7 and 8; with corresponding esentutl

1.2. File structure

An ESE database (EDB) file consist of the following distinguishable elements:
• file header
• fixed size pages

page 1



Characteristics Description

Byte order little-endian

Date and time values in both UTC and local time

Character string ASCII strings are stored in extended ASCII with a codepage.
Unicode strings are stored in UTF-16 little-endian without the byte order 
mark (BOM).

The pages contain the database, which basically consists of tables and indexes.

A table is made up out of:
• rows (also referred to as records)
• columns

An EDB contains several metadata tables, these are tables needed for maintaining the database. The 
metadata tables are:

• the space tree
• the catalog and the backup catalog

Because ESE stores the database data in fixed size pages, long values are used to store values that 
are larger than the page size.

2. (Database) file header
The (database) file header is stored in the first database page. The byte value in the remainder of the 
page are set to 0. A copy of the (database) file header is stored in the second page.

The (database) file header is (at least) 668 bytes of size and consists of:
offset size value description

0 4 Checksum
The checksum is a XOR over the 32-bit 
little-endian values in the header starting 
at offset 8 to offset 4096. The value 
0x89abcdef is used as the initial value.

4 4 “\xef\xcd\xab\x89” The signature

8 4 File format version

12 4 File type
See section: 2.1 File type

16 8 Database time
Consists of a database time
See section: 5.1.1 Database time

24 28 Database signature
Consists of a database signature
See section: 5.1 Database signature

52 4 Database state
See section: 2.3 Database state

page 2



offset size value description

56 8 Consistent position
Consists of a log position
See section: 8.2 Log position
This is the log position that was used 
when the database was last brought to a 
clean shutdown state or NULL if the 
database is in a dirty state.

64 8 Consistent date and time
Consists of a log time
See section: 8.3 log time
This is the time when the database was 
last brought to a clean shutdown state or 
NULL if the database is in a dirty state.

72 8 Attach date and time
Consists of a log time
See section: 8.3 log time
The date and time when the database was 
last attached.

80 8 Attach position
Consists of a log position
See section: 8.2 Log position
The log position that was used the last 
time the database was attached.

88 8 Detach date and time
Consists of a log time
See section: 8.3 log time
The date and time when the database was 
last detached.

96 8 Detach position
Consists of a log position
See section: 8.2 Log position
The log position that was used the last 
time the database was detached.

104 28 Log signature
Consists of a database signature
See section: 5.1 Database signature

132 4 0 Unknown
Empty value

136 24 Previous full backup
Consists of a backup information
See section: 7.1 Backup information

160 24 Previous incremental backup
Consists of a backup information
See section: 7.1 Backup information

184 24 Current full backup
Consists of a backup information

page 3



offset size value description

See section: 7.1 Backup information

208 4 Shadowing disabled

212 4 Last object identifier
The last object identifier in the database

216 4 Major version
Represents the Windows NT major 
version when the databases indexes were 
updated.

220 4 Minor version
Represents the Windows NT minor 
version when the databases indexes were 
updated.

224 4 Build number
Represents the Windows NT build 
number when the databases indexes were 
updated.

228 4 Service pack number
Represents the Windows NT service pack 
number when the databases indexes were 
updated.

232 4 File format revision

236 4 Page size
Value in bytes

240 4 Repair count

244 8 Repair date and time
Consists of a log time
See section: 8.3 log time

252 28 0 Unknown2
See below

280 8 Scrub database time
Consists of a database time
See section: 5.1.1 Database time

288 8 Scrub date and time
Consists of a log time
See section: 8.3 log time

296 8 Required log
Consists of 2x 32-bit values

304 4 Upgrade Exchange 5.5 format

308 4 Upgrade Free Pages

312 4 Upgrade Space Map Pages

316 24 Current shadow copy backup
Consists of a backup information

page 4



offset size value description

See section: 7.1 Backup information

340 4 Creation file format version

344 4 Creation file format revision

348 16 Unknown3
See below

364 4 Old repair count

368 4 ECC fix success count

372 8 Last ECC fix success date and time
Consists of a log time
See section: 8.3 log time

380 4 Old ECC fix success count

384 4 ECC fix error count

388 8 Last ECC fix error date and time
Consists of a log time
See section: 8.3 log time

396 4 Old ECC fix error count

400 4 Bad checksum error count

404 8 Last bad checksum error date and time
Consists of a log time
See section: 8.3 log time

412 4 Old bad checksum error count

416 4 Committed log
Consists of the lower 32-bit value

420 24 Previous (shadow) copy backup
Consists of a backup information
See section: 7.1 Backup information

444 24 Previous differential backup
Consists of a backup information
See section: 7.1 Backup information

468 40 Unknown
Empty values

508 4 NLS major version
Introduced in Windows 7 part of OS 
version

512 4 NLS minor version
Introduced in Windows 7 part of OS 
version

516 148 Unknown
Empty values

664 4 Unknown flags
See below

page 5



unknown2: 
00000000: a4 88 3d 00 14 07 0f 07  03 6a 00 00 00 00 00 00   ..=..... .j...... 
00000010: 00 00 00 00 00 00 00 00  00 00 00 00               ........ .... 

found in stm

unknown3:
00000000: 2f 1d 07 0d 09 6b 00 00  00 00 00 00 00 00 00 00   /....k.. ........

found in tmp.edb

Unknown flags
Value Identifier Description

0x01000000 If not set the ECC and checksum counts and date 
and time values are not shown by eseutil, could be 
some extended data flag

0x02000000 Found in STM

Find location of:
fUpgradeDb value at offset 132?

   Streaming File: No (implied by file type)
             Dbid: 1

signSLV, fSLVExists

  Last checksum finish Date: 00/00/1900 00:00:00
Current checksum start Date: 00/00/1900 00:00:00
      Current checksum page: 0

Some of the values in the file header corresponds correspond with those in the miscellaneous 
database information (JET_DBINFOMISC).

In a clean database the consistent position, date and time matches the detach position, date and time.

2.1. File type

Value Identifier Description

0 Database
Contains a hierarchical page-based storage

1 Streaming file
Contains streamed data.

Note that the rest of the format specification largely applies to the database file type.

2.2. File format version and revision

According to [MSDN] the file format version and revision consist of the following values:

page 6



Version Revision Description

0x00000620 0x00000000 Original operating system Beta format (4/22/97).

0x00000620 0x00000001 Add columns in the catalog for conditional indexing and OLD 
(5/29/97).

0x00000620 0x00000002 Add the fLocalizedText flag in IDB (6/5/97).

0x00000620 0x00000003 Add SPLIT_BUFFER to space tree root pages (10/30/97).

0x00000620 0x00000002 Revert revision in order for ESE97 to remain forward-
compatible (1/28/98).

0x00000620 0x00000003 Add new tagged columns to catalog ("CallbackData" and 
"CallbackDependencies").

0x00000620 0x00000004 Super Long Value (SLV) support: signSLV, fSLVExists in db 
header (5/5/98).

0x00000620 0x00000005 New SLV space tree (5/29/98).

0x00000620 0x00000006 SLV space map (10/12/98).

0x00000620 0x00000007 4-byte IDXSEG (12/10/98).

0x00000620 0x00000008 New template column format (1/25/99).

0x00000620 0x00000009 Sorted template columns (6/24/99).
Used in Windows XP SP3

0x00000620 0x0000000b Contains the page header with the ECC checksum
Used in Exchange

0x00000620 0x0000000c Used in Windows Vista (SP0)

0x00000620 0x00000011 Support for 2 KiB, 16 KiB and 32 KiB pages.
Extended page header with additional ECC checksums.
Column compression.
Space hints.
Used in Windows 7 (SP0)

0x00000623 0x00000000 New Space Manager (5/15/99).

2.3. Database state

The database state consist of the following values:

Value Identifier Description

1 JET_dbstateJustCreated The database was just created.

2 JET_dbstateDirtyShutdown The database requires hard or soft recovery to be 
run in order to become usable or movable. One 
should not try to move databases in this state.

3 JET_dbstateCleanShutdown The database is in a clean state. The database can 
be attached without any log files.

page 7



Value Identifier Description

4 JET_dbstateBeingConverted The database is being upgraded.

5 JET_dbstateForceDetach Internal.
This value is introduced in Windows XP

3. Hierarchical page-based storage
The EDB file uses a fixed size page to store data. The size of the page is defined in the file header.

In a database file these pages are ordered in a B+-tree. The pages can B+-tree references to other 
pages or data. These page B+-trees make up the database tables and indexes. 

Every page B+-tree refers to a 'Father of the Data Page' (FDP) object identifier, which is basically a 
unique number for the specific page B+-tree.

A page consists of:
• a page header
• the page values
• the page tags (page value index)

The page (file) offset and number can be calculated as following:
page offset = ( page number x page size ) + page size
            = ( page number + 1 ) x page size

page number = ( page offset -  page size ) / page size
            = ( page offset / page size ) - 1

3.1. Page header

The page header is 40 or 80 bytes of size and consists of:
offset size value description

Before Exchange 2003 SP1 and Windows Vista

0 4 The XOR checksum
The checksum is a XOR over the 32-bit 
little-endian values in the header starting 
at offset 4 to the end of the page. The 
value 0x89abcdef is used as the initial 
value.

4 4 Page number
Used for the XOR checksum

Exchange 2003 SP1 and Windows Vista and later
(As of version 0x620 revision 0x0b)
The new record format page flag must be set

0 4 The XOR checksum
The checksum is a XOR over the 32-bit 
little-endian values in the header starting 

page 8



offset size value description

at offset 8 to the end of the page. The 
page number is used as the initial value.

4 4 The ECC checksum
[TODO]

Windows 7 and later
(As of version 0x620 revision 0x11)

0 8 Checksum
[TODO]

Common

8 8 Database last modification time
Consists of a database time
See section: 5.1.1 Database time
This value indicates the database time the 
page was last modified.

16 4 Previous page number
This value indicates the page number of 
the adjacent left page on the leaf.

20 4 Next page number
This value indicates the page number of 
the adjacent right page on the leaf.

24 4 Father Data Page (FDP) object identifier
This value indicates which page B+-tree 
this page belongs to.

28 2 Available data size
The number of bytes available within the 
page.

30 2 Available uncommitted data size
The number of uncommitted bytes  within 
the page. Uncommitted bytes are free but 
available for reclaim by rollback on the 
page.

32 2 (First) available data offset
The offset is relative from the end of the 
page header

34 2 (First) available page tag

36 4 Page flags
See section: 3.1.3 Page flags

Extended page header Windows 7 and later
(As of version 0x620 revision 0x11)
Only for pages of 16 KiB and 32 KiB ?

40 8 Extended checksum 1
[TODO]

48 8 Extended checksum 2

page 9



offset size value description

[TODO]

56 8 Extended checksum 3
[TODO]

64 8 Page number

72 8 Unknown
Empty values

3.1.1. Changes in Exchange 2003 SP1

According to [MSDN] Exchange Server 2003 Service Pack 1 (SP1) introduces a new feature named 
Error Correcting Code (ECC) Checksum. ECC Checksum is a new checksum format that enables 
the correction of single-bit errors in database pages (in the .edb file, .stm file, and transaction log 
files). This new checksum format uses 64-bits, whereas the earlier checksum format uses 32-bits. 
Earlier format databases can be used with the new code, but current format databases cannot be used 
with earlier versions of ESE. After the database engine is updated, all pages that are written to the 
database have the new checksum format. Pages that are read and not modified do not have their 
checksum format upgraded.

Database pages with the earlier-format checksum start with a 32-bit checksum, followed by a 32-bit 
page number, which is used to verify that the requested page is actually read off disk.

The new checksum format removes the 32-bit page number and instead starts with an eight-byte 
checksum. The page number is used as an input parameter in calculating the checksum. Therefore, if 
the wrong page is read off disk, there will be a checksum mismatch.

The current checksum format actually consists of two 32-bit checksums. The first is an XOR 
checksum, calculated much like the earlier format checksum. The page number is used as a seed in 
the calculation of this checksum. The second 32-bit checksum is an ECC checksum, which allows for 
the correction of single-bit errors on the page.

3.1.2. Changes in Windows 7

In Windows 7, for pages of 16 KiB and 32 KiB, the page header was extended with mainly 
additional error recovery checksums.

3.1.3. Page flags

The page flags consist of the following values:

Value Identifier Description

0x00000001 The page is a root page

0x00000002 The page is a leaf page

0x00000004 The page is a parent page

0x00000008 The page is empty

0x00000010

page 10



Value Identifier Description

0x00000020 The page is a space tree page

0x00000040 The page is an index page

0x00000080 The page is a long value page

0x00000100

0x00000200

0x00000400 Unknown

0x00000800 Unknown
Does not seems to be the primary page flags?
Flag for unique keys?

0x00001000

0x00002000 New record format
New checksum format

0x00004000 Is scrubbed (was zero-ed)

0x00008000 Unknown

Index page unique keys/non-unique keys
PageFlushType = 1 (0x8000) ?

3.2. Page tags

The page tags are stored at the end of the the page. The page tags are stored back to front. The page 
header indicates the first unused page tag.

Note that there can be more page tags in the page than being used.

3.2.1. Page tag - format revision 12 and earlier

A page tag is 4 bytes of size and consists of:
offset size value description

0.0 13 bits Value offset
The offset is relative after the page header

1.5 3 bits Page tag flags
See section: 3.2.3 Page tag flags

2.0 13 bits Value size

2.5 3 bits Unknown
Seen 2nd MSB set

3.2.2. Page tag - format revision 17 and later

In Windows 7 (format revision 0x11), for pages of 16 KiB and 32 KiB, the page tags were changed, 
to support these page sizes. For these page sizes the page tag flags have been moved to the first 16-
value in the leaf page entry.

page 11



A page tag is 4 bytes of size and consists of:
offset size value description

0.0 15 bits Value offset
The offset is relative after the extended 
page header

3.7 1 bit Unknown
Sometimes set

2 15 bits Value size

3.6 1 bit Unknown
Sometimes set

3.2.3. Page tag flags

The page tag flags consist of the following values:

Value Identifier Description

0x0001 v Unknown (Value)
The page value contains variable sized data types?

0x0002 d Defunct
The page value is no longer used

0x0004 c Common key
The page value contains a common page key size

3.3. Page B+-tree

In the B+-tree hierarchy there are multiple types of pages:
• root page
• branch page
• leaf page

These different type of pages contain different types of page values.

3.3.1. Empty page

Although empty pages can contain data they are ignored when creating a page B+-tree.

3.3.2. Root page

The root page is identified by the 'is root' flag.

The root page contains different types of values:
• the root page header
• branch or leaf page entries

page 12



3.3.2.1. Root page header

The root page header is the first page tag within the page.

The root page header is 16 bytes of size and consists of:
offset size value description

0 4 The initial number of pages
The number of pages when the object was 
first created in the page tree.

4 4 The parent Father Data Page (FDP) 
number

8 4 Extent space
0x00000000 => single
0x00000001 => multiple

12 4 The space tree page number
0 if not set
masks 0xff000000 if not set
(pgnoOE)

The FDP flag in the eseutil seems to be implied if the parent Father Data Page (FDP) number 
(pgnoFDP) is set.

The primary extent represents the the initial number of pages followed by a dash and a letter after the 
that indicates whether the space for the B-Tree is currently represented using multiple pages ("m") or 
a single page ("s").

The space tree page number is valid when the extent space > 0.

3.3.3. Branch page

The branch page not identified by any flags, the 'is leaf' flag should not be set. The branch page can 
contain the 'is parent' flag.

What is the significance of the 'is parent' flag?

Both the branch page contains different types of values:
• the branch page header
• branch page entries

3.3.3.1. Branch page header

The branch page header is the first page tag within the page.

If the branch page has no 'is root' flag the branch page header is variable of size and consists of:
offset size value description

0 ... Common page key

page 13



3.3.3.2. Branch page entry

The branch page entry is variable of size and consists of:
offset size value description

If page tag flag 0x04 is set

0 2 Common page key size

Common for all page flags

0 2 Local page key size

2 (size) The local page key
The highest page key in the page B+-tree 
branch
Note that the last father data page entry 
contains an empty page key

... 4 Child page number
The child page number is invalid if it 
exceeds the last page in the file

The actual page key of the page entry is a combination of the part of the common page key, which is 
stored in the page header, specified by the size of the common page key size value, followed by the 
local page key stored in the page entry.

3.3.4. Leaf page values

The leaf page is identified by the 'is leaf' flag.

The leaf page contains different types of values:
• the leaf page header
• leaf page entries

There are multiple types of leaf pages:
• index leaf pages; identified by the 'is index' page flag
• long value leaf pages; identified by the 'is long value' page flag
• table leaf pages

Every type of leaf page has a different type of leaf page entry.

3.3.4.1. Leaf page header

The leaf page header is the first page tag within the page.

If the leaf page has no 'is root' flag the leaf page header is variable of size and consists of:
offset size value description

0 ... Common page key

If there is no leaf page header the size of the corresponding page tag is 0.

page 14



3.3.4.2. Leaf page entry

The leaf page entries for the different types of leaf pages use a similar entry structure.

Note that the 3 MSB of the first 2 bytes can contain the page tag flags, see format revision 17.

The leaf page entry is variable of size and consists of:
offset size value description

If page tag flag 0x04 is set

0 2 Common page key size

Common for all page flags

2 2 Local page key size

4 ... Local page key

... ... Entry data

The actual page key of the page entry is a combination of the part of the common page key, which is 
stored in the page header, specified by the size of the common page key size value, followed by the 
local page key stored in the page entry.

3.3.4.2.1. Leaf page entry - format revision 17 and later

In Windows 7 (format revision 0x11), for pages of 16 KiB and 32 KiB, the size of the page key in 
the leaf page entry was changed.

The upper 3-bits of the first 16-bit value (either the key type or the size of the page key) contain the 
page tag flags (See section: 3.2.3 Page tag flags).

3.4. Page values

3.4.1. Space tree page values

The space tree page is identified by the following flags:
• is space tree

Is the root flag always set?

Space tree branch pages are similar to branch pages.

The space tree leaf page contains different types of values:
• the space tree page header
• space tree page entries

The primary space tree page referenced from the father data page contains information about the 
owned pages. The secondary space tree page which is the primary space tree page number + 1 
contains information about the available pages.

page 15



3.4.1.1. Space tree leaf page header

The space tree page header is the first page value within the page.

The space tree page header is 16 bytes of size and consists of:
offset size value description

0 16 0 Unknown

When the space tree page was referenced from the father data page the space tree page header 
contains 0 bytes.

The space tree header can also be empty (have a page value size of 0). related to root flag value?

TODO
00000000: 44 03 00 00 01 00 00 00  c6 03 00 00 04 00 00 00   D....... ........

3.4.1.2. Space tree leaf page entry

The space tree page entry is variable of size and consists of:
offset size value description

0 2 4 Size of the page key

2 ... Page key value

... 4 number of pages

Owned space The number of pages of all the space tree page entries in the primary space 
tree page make up the number of owned space.

Available space The number of page of all the space tree page entries make up the number of 
available space.

Note that space tree entries with the defunct page flag (0x02) are not included.

3.4.2. Index page values

The index page is identified by the following flags:
• is index

Index branch pages are similar to branch pages.

3.4.2.1. Index leaf page entry data

The index leaf page entry data is variable of size and consists of:
offset size value description

0 ... Record page key

page 16



3.4.3. Long value page values

The long value pages are identified by the following flags:
• is long value

For the format of the long value data definitions see section: 4.4 Long Values.

3.4.4. Table page values

The table page values are not identified by a flag. So basically if none of the previously mentioned 
flags is defined the page contains table value data definitions. See section: 4 Data definitions for 
more information.

4. Data definitions
In ESE there are multiple categories of table data definitions, each category uses different data type 
identifiers.
Data type 
identifiers

Amount Category Description

0x0001 – 0x007f 126 Fixed size Fixed size data types (columns) use a 
defined number of space, even if no 
value is defined.

0x0080 - 0x00ff 127 Variable size Variable size data types (columns) can 
contain up to 256 bytes of data.
An offset array is stored in the record 
with the highest variable size data type 
set. Each array entry requires two 
bytes.

0x0100 - 0xfffff 64993 Tagged Tagged data types (columns) are data 
types that occur rarely or have multiple 
occurrences. Tagged data types have 
an unlimited data size. The data type 
identifier and size are stored with the 
data. When a tagged data type does not 
contain data no information about it 
stored.

The data definitions are stored in (data definition) records. Such a data definition records contains 
the values of a table row.

According to [MSDN] data type identifiers 10 and 11 can be defined as variable columns

4.1. Data definition header

The data definition header is 4 bytes of size and consists of:
offset size value Description

0 1 Last fixed size data type

page 17



offset size value Description

1 1 Last variable size data types

2 2 The offset to the variable size data types
The offset is relative from the start of the 
data definition header

4.2. Data type definitions

The data type definitions is variable of size and consists of:
offset size value Description

0 ... Fixed size data type definitions

... ... Unknown trailing data
used to handle tagged data type 
definitions?

... ... The variable size data types size array

... ... The variable size data types data array
Contains data for a variable data type

... ... The tagged data type definitions

Although the corresponding table definition does not contain fixed size and/or variable size data type 
definitions the data type definition still can contain them. They need to be handled to find the offset 
of the tagged data type definitions.

The data type definitions will contain temple table tagged data type identifiers before table tagged 
data type identifiers. Also see section: 9.3 Template tables.

4.2.1. Variable size data type size array entry

The variable size data type size array entry is 2 bytes of size and consists of:
offset size value Description

0 2 The variable size data type identifier
Contains a 2 byte size value for every 
variable data type. The MSB signifies that 
the variable size data type is empty. Also 
the size of the previous variable size data 
type needs to be subtracted from the 
current size.

4.2.2. The tagged data type definitions - format revision 2

For EDB format revision 2 the tagged data type definitions consist of multiple entries.

A tagged data type definitions entry is variable of size and consists of:
offset size value Description

0 2 The tagged data type identifier

page 18



offset size value Description

2 2 Size of the tagged data type data
The offset is relative from the start of the 
tagged data type offset array
flag bits:
0x8000 (?)

4 1 Tagged data type flags
Currently only 0x00 values have been 
seen

5 ... Value

When the 0x8000 flag bit is set the tagged data type offset array entry is directly followed by the 
value data. The size of the tagged data type data contains the size of the value data. The value is 
seems to be preceded by the tagged data type flags?

4.2.3. The tagged data type definitions - format revision 9 and later

For format revision 9 and later the tagged data type definitions consist of an an offset and data array.

offset size value Description

0 ... The tagged data types offset array

... ... The tagged data types data array

4.2.3.1. Tagged data type offset array entry - format revision 9 and later

The tagged data type offset array entry is 4 bytes of size and consists of:
offset size value Description

0 2 The tagged data type identifier

2 2 Size or offset of the tagged data type data
The offset is relative from the start of the 
tagged data type offset array
flag bits:
0x4000 (tagged data type flags present)
0x8000 (?)

What does a size of 0 indicate: that the value is empty or contains the default value?

The number of tagged data types is deduced from the first tagged data type data offset?

If the bit 0x4000 is set in the size the value is preceded by the tagged data type flags. The size cannot 
be greater equal than 0x4000.

Note that as of Windows 7 and later (version 0x620 revision 0x11), for pages of 16 KiB and 32 KiB, 
the tagged data type flags are always present in database and no longer controlled by the flag bits. 
The size can be greater equal than 0x4000.

page 19



4.2.3.2. Tagged data type flags

Value Identifier Description

0x01 Variable size value

0x02 Data is compressed

0x04 Data is stored in a long value
The data type definition contains a long value 
identifier, which is the key of the long value in 
reverse

0x08 Data contains a multi value
See section: 4.5 Mutli values

0x10 Multi value contains size definition instead of offset 
definitions

Are multi long values used?

Tag data type flags:
0x01 => unicode value or single value (not the sparse flag)
0x05 => Long value (4 byte long value identifier or page key)
0x08 => (fixed size type?) multi value
0x09 => (variable size type?) multi value
0x0b => compressed multi value (see below)
0x18 => (fixed size type?) multi value (with size definition)

column definition name                                   : System_Kind
column definition type                                   : Text (extended 
ASCII or Unicode string) (JET_coltypText)
(450) tagged data type identifier                        : 450
(450) tagged data type offset                            : 0x4244 (580)
(450) tagged data type size                              : 24
(450) tag byte                                           : 0x18
(450) tagged data type:
00000000: 08 6c 00 69 00 6e 00 6b  00 70 00 72 00 6f 00 67   .l.i.n.k .p.r.o.g
00000010: 00 72 00 61 00 6d 00                               .r.a.m.

byte size of first value?

(457) tagged data type flags            : 0x0b 
        Is variable size 
        Is compressed 
        Is multi value 

(457) tagged data type: 
00000000: 04 00 09 00 13 ec b4 7b  0d 70 00 72 00 6f 00 67   .......{ .p.r.o.g 
00000010: 00 72 00 61 00 6d 00                               .r.a.m. 

Why is only the first entry is compressed?

page 20



4.3. Example: the catalog (data type) definition

The data below is an example of the catalog (data type) definition. Also see section: 9.2.1 Catalog
(MSysObjects and MSysObjectsShadow)

offset size value Description

Fixed size data type definitions

0 4 The Father Data Page (FDP) object 
identifier

4 2 Catalog type
See section: 9.2.1.1 Catalog types

6 4 The identifier

If data definition type is 0x0002 (column)

10 4 Column type
See section: 6.1 Column type

Other data definition types

10 4 The Father Data Page (FDP) number

If data definition type is 0x0001 (table)

14 4 Space usage
The number of pages used by the table

18 4 Flags (or group of bits)

22 4 The (initial) number of pages

If data definition type is 0x0002 (column)

14 4 Space usage
The number of bytes used by the column

18 4 Flags (or group of bits)
See section: 6.2 Column flags (group of
bits)

22 4 Codepage

If data definition type is 0x0003 (index)

14 4 Space usage
The number of pages used by the index

18 4 Flags (or group of bits)

22 4 The locale identifier (LCID)
See section: [NTLCID]
The LCID is used for normalizing the 
string when JET_bitIndexUnicode is not 
specified in the index flags (group of bits).

If data definition type is 0x0004 (long value)

14 4 Space usage
The number of pages used by the long 
value

page 21



offset size value Description

18 4 Flags (or group of bits)
0x00000000 => single extent
0x00000001 => multiple extent

22 4 The (initial) number of pages

If data definition type is 0x0005 (callback)

TODO

All data definition types

26 1 The root flag

27 2 The record offset
The offset of the data type within the 
record

29 4 The LC map flags

33 2 Key most

35 ... Unknown trailing data
used to handle tagged data type 
definitions?

... ... The variable data types size array

... ... The variable data types data array
Contains data for a variable data type

If more data is present

... ... The tagged data types offset array

If present in the tagged types offset array

The tagged data types data array
Contains data for a tagged data type

For data definition type is 0x0001 (table) the variable data type 'TemplateTable' is used to store the 
name of the table used as its template. See section: 9.3 Template tables.

For data definition type is 0x0005 (callback) the variable data type 'TemplateTable' is used to store 
the name of the DLL and function to call.

4.4. Long Values

The actual long values are stored in a separate page tree. The corresponding page key of the long 
value is the long value identifier in reverse byte order. E.g. a long value identifier of: 0xa7000000 
relates to a page key of 0x000000a7. In version 0x620 and revision 0x0c the page key contains the 
leading 0 values in revision 0x09 these leading 0 values are not present.

The long value page key refers to a page value in the long value page tree corresponding to the table 
page tree as defined in the catalog.

This page value contains the long value header. The long value header is 8 bytes of size and consists 
of:

page 22



offset size value Description

0 4 Unknown
Value is 1
Value is 0 in some defunct long values

4 4 Unknown
Last segment offset

Hypothesis: the total long value size, 
holds for a lot of single segment long 
values but not for some multi segment 
long values
Largest segment size?l

The corresponding segments can be found by combining the long value page key with a 4 byte 
segment offset, starting with offset 0. E.g. the first segment for the long value identifier 0xa7000000 
is the page key 0x000000a7 followed by the segment offset 0x00000fae (4014), therefore 
0x000000a7000000fae.

One long value page tree per table?

Inverse key stored in data type definition

The offset (+ data size) of the last segment can exceed the total long value size?

4.5. Mutli values

The multi value is variable of size and consists of:
offset size value Description

0 ... Value offset array
Consists of 16-bit offset values
The offset is relative to the start of the 
multi value
flag bits:
0x8000 (?)

... ... Value data array

column definition identifier                             : 625
column definition name                                   : ML827a
column definition type                                   : Integer 32-bit 
signed (JET_coltypLong)
(625) tagged data type identifier                        : 625
(625) tagged data type offset                            : 0x43cb (971)
(625) tagged data type size                              : 31
(625) tag byte                                           : 0x08
(625) tagged data type:
00000000: 0a 00 0e 00 12 00 16 00  1a 00 17 80 00 00 37 80   ........ ......7.
00000010: 00 00 16 3a 00 00 19 80  00 00 18 80 00 00         ...:.... ......

00000000: 06 00 0a 00 0e 00 80 80  00 00 90 80 00 00 a0 80   ........ ........
00000010: 00 00                                              ..

page 23



2 byte offset(s)
fixed size value(s)

column definition identifier                             : 318
column definition name                                   : MN667f
column definition type                                   : Large binary data 
(JET_coltypLongBinary)
(318) tagged data type identifier                        : 318
(318) tagged data type offset                            : 0x4173 (371)
(318) tagged data type size                              : 45
(318) tag byte                                           : 0x09
(318) tagged data type:
00000000: 04 00 18 00 44 0d 4a ae  39 18 8f 40 a0 0d be 80   ....D.J. 9..@....
00000010: cb bf cd ad 00 00 00 00  5a 1f 4f 36 67 80 6b 4f   ........ Z.O6g.kO
00000020: a1 81 89 f2 bb 7e 6b 39  00 00 00 00               .....~k9 ....

2 byte offset(s)
variable size value(s)

column definition identifier            : 296
column definition name                  : MS8053
column definition type                  : Large text (extended ASCII or 
Unicode string) (JET_coltypLongText)
(296) tagged data type identifier       : 296
(296) tagged data type offset           : 0x429b (667)
(296) tagged data type size             : 3019
(296) tagged data type flags            : 0x09
        Is variable size
        Is multi value

(296) tagged data type:
00000000: 42 00 9e 00 f8 00 58 01  bc 01 1c 02 7a 02 d8 02   B.....X. ....z...
00000010: 40 03 a8 03 0c 04 72 04  d4 04 2e 05 98 05 f6 05   @.....r. ........
00000020: 64 06 d6 06 30 07 8a 07  ee 07 52 08 c6 08 26 09   d...0... ..R...&.
00000030: 88 09 e8 09 44 0a a2 0a  02 0b 64 0b be 8b c2 8b   ....D... ..d.....
00000040: c6 8b 75 00 72 00 6e 00  3a 00 73 00 63 00 68 00   ..u.r.n. :.s.c.h.

MSB contains some flag (defunct?)

0x8000 flag

00000000: 42 00 9e 00 f8 00 58 01  bc 01 1c 02 7a 02 d8 02   B.....X. ....z...
00000010: 40 03 a8 03 0c 04 72 04  d4 04 2e 05 98 05 f6 05   @.....r. ........
00000020: 64 06 d6 06 30 07 8a 07  ee 07 52 08 c6 08 26 09   d...0... ..R...&.
00000030: 88 09 e8 09 44 0a a2 0a  02 0b 64 0b be 8b c2 8b   ....D... ..d.....
00000040: c6 8b                                              ..

00000040:       75 00 72 00 6e 00  3a 00 73 00 63 00 68 00     u.r.n. :.s.c.h.
00000050: 65 00 6d 00 61 00 73 00  2d 00 6d 00 69 00 63 00   e.m.a.s. -.m.i.c.
00000060: 72 00 6f 00 73 00 6f 00  66 00 74 00 2d 00 63 00   r.o.s.o. f.t.-.c.
00000070: 6f 00 6d 00 3a 00 6f 00  66 00 66 00 69 00 63 00   o.m.:.o. f.f.i.c.
00000080: 65 00 3a 00 6f 00 66 00  66 00 69 00 63 00 65 00   e.:.o.f. f.i.c.e.
00000090: 23 00 41 00 75 00 74 00  68 00 6f 00 72 00         #.A.u.t. h.o.r.

00000090:                                            75 00                  u.
000000a0: 72 00 6e 00 3a 00 73 00  63 00 68 00 65 00 6d 00   r.n.:.s. c.h.e.m.

page 24



00000bb0: 65 00 23 00 54 00 69 00  74 00 6c 00 65 00 43 00   e.#.T.i. t.l.e.C.
00000bc0: 00 00 44 00 00 00 45 00  00 00                     ..D...E. ..

5. Database

5.1. Database signature

The database signature (JET_SIGNATURE) is 28 bytes of size and consists of:
offset size value description

0 4 A randomly assigned number

4 8 Creation date and time
Consists of a log time
See section: 8.3 log time

12 16 The NetBIOS computer name
ASCII string terminated by a NUL-
character
Unused bytes are filled with 0

5.1.1. Database time

The database time (DBTIME) is 8 bytes of size and consists of:
offset size value description

0 2 Hours
Value should be [0 - 23]

2 2 Minutes
Value should be [0 - 59]

4 2 Seconds
Value should be [0 – 59]

6 2 0 Padding

6. Columns

6.1. Column type

The column type (JET_COLTYP) consist of the following values:

Value Identifier Description

0 JET_coltypNil Invalid
Invalid column type.

1 JET_coltypBit Boolean
Boolean column type that can be true, or false but 
cannot be NULL. This type of column is one byte 
of size and is a fixed size.

page 25



Value Identifier Description

2 JET_coltypUnsignedByte Integer 8-bit unsigned

3 JET_coltypShort Integer 16-bit signed

4 JET_coltypLong Integer 32-bit signed

5 JET_coltypCurrency Currency (64-bit)
An 8-byte signed integer that can consist of  values 
between - 9223372036854775808 and 
9223372036854775807.

6 JET_coltypIEEESingle Floating point single precision (32-bit)

7 JET_coltypIEEEDouble Floating point double precision (64-bit)

8 JET_coltypDateTime Date and time (64-bit)
The date and time is stored as a little-endian filetime
A double-precision (8-byte) floating point number 
that represents a date in fractional days since the 
year 1900. This column type is identical to the 
variant date type (VT_DATE).

9 JET_coltypBinary Binary data
A fixed or variable size, raw binary column that can 
be up to 255 bytes in size.

10 JET_coltypText Text (Extended ASCII or Unicode)
A fixed or variable size text column that can be up 
to 255 ASCII characters in size or 127 Unicode 
characters in size.
The text need not be null terminated, but embedded 
null characters can be stored.

11 JET_coltypLongBinary Large binary data
A fixed or variable size, raw binary column that can 
be up to 2147483647 bytes of size.

12 JET_coltypLongText Large text (Extended ASCII or Unicode)
A fixed or variable size, text column that can be up 
to 2147483647 ASCII characters in size or 
1073741823 Unicode characters in size.

Values introduced in Windows XP

13 JET_coltypSLV Super Large Value
This column type is obsolete.
A record in the .edb file contains a column (of data 
type JET_coltypSLV) that references a list of pages 
in the streaming file that contains the raw data. 
Space usage (maximum of four kilobytes of page 
numbers) and checksum data for the data in the 
streaming file is stored in the .edb file.
SLV = Super Long Value

Values introduced in Windows Vista

14 JET_coltypUnsignedLong Integer 32-bit unsigned

15 JET_coltypLongLong Integer 64-bit signed

page 26



Value Identifier Description

16 JET_coltypGUID GUID (128-bit)

17 JET_coltypUnsignedShort Integer 16-bit unsigned

ASCII strings are always treated as case insensitive for sorting and searching purposes. Further, only 
the characters preceding the first null character (if any) are considered for sorting and searching.
Unicode strings use the Win32 API LCMapString to create sort keys that are subsequently used for 
sorting and searching that data. By default, Unicode strings are considered to be in the U.S. English 
locale and are sorted and searched using the following normalization flags: NORM_IGNORECASE, 
NORM_IGNOREKANATYPE, and NORM_IGNOREWIDTH. In Windows 2000, it is possible to 
customize these flags per index to also include NORM_IGNORENONSPACE. In Windows XP and 
later releases, it is possible to request any combination of the following normalization flags per index: 
LCMAP_SORTKEY, LCMAP_BYTEREV, NORM_IGNORECASE, 
NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS, NORM_IGNOREKANATYPE, 
NORM_IGNOREWIDTH, and SORT_STRINGSORT.
In all releases, it is possible to customize the locale per index. Any locale may be used as long as the 
appropriate language pack has been installed on the machine. Finally, any null characters 
encountered in a Unicode string are completely ignored.

6.2. Column flags (group of bits)

The column flags consist of the following values:

Value Identifier Description

0x00000001 JET_bitColumnFixed Is fixed size
The column will always use the same size (within 
the row) regardless of how much data is stored in 
the column.

0x00000002 JET_bitColumnTagged Is tagged
The column is tagged. A tagged columns does not 
take up any space in the database if it does not 
contain data.

0x00000004 JET_bitColumnNotNULL Not empty
The column is not allow to be set to an empty value 
(NULL).

0x00000008 JET_bitColumnVersion Is version column
The column is a version column that specifies the 
version of the row.

0x00000010 JET_bitColumnAutoincrement The column will automatically be incremented. The 
number is an increasing number, and is guaranteed 
to be unique within a table. The numbers, however, 
might not be continuous. For example, if five rows 
are inserted into a table, the "autoincrement" 
column could contain the values { 1, 2, 6, 7, 8 }. 
This bit can only be used on columns of type 
JET_coltypLong or JET_coltypCurrency.

0x00000020 JET_bitColumnUpdatable This bit is valid only on calls to  JetGetColumnInfo.

page 27



Value Identifier Description

0x00000040 JET_bitColumnTTKey This bit is valid only on calls to  JetOpenTable.

0x00000080 JET_bitColumnTTDescending This bit is valid only on calls to 
JetOpenTempTable.

0x00000400 JET_bitColumnMultiValued The column can be multi-valued. A multi-valued 
column can have zero, one, or more values 
associated with it. The various values in a multi-
valued column are identified by a number called the 
itagSequence member, which belongs to various 
structures, including:  JET_RETINFO, 
JET_SETINFO,  JET_SETCOLUMN, 
JET_RETRIEVECOLUMN, and 
JET_ENUMCOLUMNVALUE. Multi-valued 
columns must be tagged columns; that is, they 
cannot be fixed-length or variable-length columns.

0x00000800 JET_bitColumnEscrowUpdate Specifies that a column is an escrow update 
column. An escrow update column can be updated 
concurrently by different sessions with 
JetEscrowUpdate and will maintain transactional 
consistency. An escrow update column must also 
meet the following conditions:

• An escrow update column can be created 
only when the table is empty.

• An escrow update column must be of type 
JET_coltypLong.

• An escrow update column must have a 
default value (that is cbDefault must be 
positive).

• JET_bitColumnEscrowUpdate cannot be 
used in conjunction with 
JET_bitColumnTagged, 
JET_bitColumnVersion, or 
JET_bitColumnAutoincrement.

0x00001000 JET_bitColumnUnversioned The column will be created in an without version 
information. This means that other transactions that 
attempt to add a column with the same name will 
fail. This bit is only useful with  JetAddColumn. It 
cannot be used within a transaction.

Values introduced in Windows 2003

0x00002000 JET_bitColumnDeleteOnZero The column is an escrow update column, and when 
it reaches zero, the record will be deleted. A 
common use for a column that can be finalized is to 
use it as a reference count field, and when the field 
reaches zero the record gets deleted. 
JET_bitColumnDeleteOnZero is related to 
JET_bitColumnFinalize. A Delete-on-zero column 
must be an escrow update column. 

page 28



Value Identifier Description

JET_bitColumnDeleteOnZero cannot be used with 
JET_bitColumnFinalize. 
JET_bitColumnDeleteOnZero cannot be used with 
user defined default columns.

Values introduced in Windows XP

0x00002000 JET_bitColumnMaybeNull Reserved for future use.

0x00004000 JET_bitColumnFinalize Use JET_bitColumnDeleteOnZero instead of 
JET_bitColumnFinalize. JET_bitColumnFinalize 
that a column can be finalized. When a column that 
can be finalized has an escrow update column that 
reaches zero, the row will be deleted. Future 
versions might invoke a callback function instead 
(For more information, see  JET_CALLBACK). A 
column that can be finalized must be an escrow 
update column. JET_bitColumnFinalize cannot be 
used with JET_bitColumnUserDefinedDefault.

0x00008000 JET_bitColumnUserDefinedDef
ault

The default value for a column will be provided by 
a callback function. See JET_CALLBACK. A 
column that has a user-defined default must be a 
tagged column. Specifying 
JET_bitColumnUserDefinedDefault means that 
pvDefault must point to a 
JET_USERDEFINEDDEFAULT structure, and 
cbDefault must be set to 
sizeof( JET_USERDEFINEDDEFAULT ).
JET_bitColumnUserDefinedDefault cannot be used 
in conjunction with JET_bitColumnFixed, 
JET_bitColumnNotNULL, JET_bitColumnVersion, 
JET_bitColumnAutoincrement, 
JET_bitColumnUpdatable, 
JET_bitColumnEscrowUpdate, 
JET_bitColumnFinalize, 
JET_bitColumnDeleteOnZero, or 
JET_bitColumnMaybeNull.

6.3. Compression

As of Windows 7 the column types JET_coltypLongBinary and JET_coltypLongText can be 
compressed [MSDN-WIN7].

The first byte in the data indicates which compression is used. If the value is 0x18 the data is 
XPRESS compressed. The data is 7-bit compressed for any other value.

6.3.1. 7-bit compression

7-bit compression is used for columns with less than 1 KiB (1024 bytes) uncompressed data that 
consists of only 7-bit values. These are stored as a continuous stream of 7-bit values.

page 29



To decompress:
1. check if the leading byte does not contain 0x18.

1. If the column type is the JET_coltypLongText
1. If the lead byte contains 0x10 and the data is ASCII text
2. Otherwise the data is either ASCII or UTF16 little-endian

2. start reading at offset 1
3. while not at end of stream

1. read a 7-bit value from the stream and convert it into an 8-bit value

If the column type is JET_coltypLongText the uncompressed data either contains an ASCII or an 
UTF-16 little-endian string.

Notes: Contains unicode 0x09, 0x0b, 0x0d, 0x0f on Win7 but not in Exchange 2010

6.3.2. XPRESS compression

Microsoft XPRESS compression is used for columns with more than 1 KiB (1024 bytes) 
uncompressed data. This compression method is a combination of the LZ77 and DIRECT2 
algorithms. The compression method is similar to the LZNT1, which is used in NTFS compression.

The compressed data is variable in size and consists of:
offset size value Description

0 1 0x18 Leading byte

1 3 Uncompressed data size

3 ... XPRESS compressed data

If the column type is JET_coltypLongText the uncompressed data either contains an ASCII or an 
UTF-16 little-endian string.

TODO: what about data > 2^16

7. Backup

7.1. Backup information

The backup information (JET_BKINFO) is 24 bytes of size and consists of:
offset size value description

0 8 The backup position
Consists of a log position
See section: 8.2 Log position
Contains an identifier of the backup

8 8 The backup creation date and time
Consists of a backup log time
See section: 8.3 log time

16 4 Generation lower number
The lower log generation number 
associated with the backup.

page 30



offset size value description

20 4 Generation upper number
The upper log generation number 
associated with the backup.

8. Transaction log

8.1. Log information

The log position (JET_LOGINFO) is 16 bytes of size and consists of:
offset size value description

0 4 16 Size of the structure

4 4 Generation lower number
The lower log generation number 
associated with the transaction.

8 4 Generation upper number
The upper log generation number 
associated with the transaction.

12 4 Log filename prefix
The prefix used to name the transaction 
log files.

Transaction log files are named according to the instance base name and the generation number of 
the log file. The name is of the format BBBXXXXX.LOG. BBB corresponds to the base name for 
the log file and is always three characters in length. XXXXX corresponds to the generation number 
of the log file in zero padded hexadecimal and is always five characters in length. LOG is the file 
extension that is always given to transaction log files by the engine.

8.2. Log position

The log position (JET_LGPOS) is 8 bytes of size and consists of:
offset size value description

0 2 block

2 2 sector

4 4 generation

8.3. (Backup) log time

The backup log time and log time (JET_BKLOGTIME and JET_LOGTIME) is 8 bytes of size and 
consist of:
offset size value description

0 1 Seconds
Value should be [0 - 60]

1 1 Minutes

page 31



offset size value description

Value should be [0 - 60]

2 1 Hours
Value should be [0 - 24]

3 1 Days
Value should be [0 - 31]

4 1 Months
Value should be [0 - 12]

5 1 Years
The year 0 represents 1900.

6 1 0 Filler byte

7 1 0 Filler byte

In a backup log time the LSB of the second filler byte can be overloaded to contains the backup type 
bit. The backup type bit consists of one of the following values:
Value Identifier Description

0 streaming backup

1 snapshot backup

The backup log time was introduced in Windows Vista.

9. Tables

9.1. Table flags (group of bits)

The table group of bits consist of the following values:

Value Identifier Description

0x00000001 JET_bitTableCreateFixedDDL Setting JET_bitTableCreateFixedDDL prevents 
DDL operations on the table (such as adding or 
removing columns).

0x00000002 JET_bitTableCreateTemplateTa
ble

Setting JET_bitTableCreateTemplateTable causes 
the table to be a template table. New tables can then 
specify the name of this table as their template table. 
Setting JET_bitTableCreateTemplateTable implies 
JET_bitTableCreateFixedDDL.

Values introduced in Windows XP

0x00000004 JET_bitTableCreateNoFixedVar
ColumnsInDerivedTables

Deprecated. Do not use.

page 32



9.2. metadata tables

9.2.1. Catalog (MSysObjects and MSysObjectsShadow)

The “MSysObjects” table contains the definitions of all the tables, indexes and long values that are 
stored within the database. It is also referred to a the catalog (metadata table). A backup (or copy) of 
the catalog is maintained in the “MSysObjectsShadow” table.

The page values (in the leaf pages) that make up the catalog contain the following information for 
every table in the database:

• a table definition
• one or more column definition
• one or more index definitions; there is always at least one index for a table
• zero or more long value definitions

The catalog also contains its own table definition. The catalog table definition consist of:
Column 
identifier

Column name Column type Description

Fixed size data definition types

1 ObjidTable Long Object or table identifier

2 Type Short Type
See section: 9.2.1.1 Catalog types

3 Id Long Identifier

4 ColtypOrPgnoFDP Long Column type or FDP page number

5 SpaceUsage Long Space usage

6 Flags Long Flags

7 PagesOrLocale Long Number of pages or codepage

8 RootFlag Bit Root flag

9 RecordOffset Short Record offset

10 LCMapFlags Long Flags for the LCMapString function.

Introduced in Windows Vista
(version 0x620 revision 0x0c)

11 KeyMost Short

Variable size data definition types

128 Name Text Name

129 Stats Binary

130 TemplateTable Text Name of the template 'table'

131 DefaultValue Binary Default value

132 KeyFldIDs Binary For the  index column identifiers

133 VarSegMac Binary

134 ConditionalColumns Binary

135 TupleLimits Binary

page 33



Column 
identifier

Column name Column type Description

Introduced in Windows Vista
(version 0x620 revision 0x0c)

136 Version Binary

Tagged data definition types

256 CallbackData Large binary 
data

Data used in callback

257 CallbackDependencie
s

Large binary 
data

Dependencies for callback

Introduced in Windows 7
(version 0x620 revision 0x11)

258 SeparateLV Large binary 
data

259 SpaceHints Large binary 
data

260 SpaceDeferredLVHin
ts

Large binary 
data

A codepage of 1200 can represent either UTF-8 (or even byte stream?) or UTF-16 little-endian. The 
way to tell is that the size of the UTF-16 stream should be a multitude of 2. If so try to decode the 
string as UTF-16 first.

9.2.1.1. Catalog types

Value Identifier Description

0x0001 Table

0x0002 Column

0x0003 Index

0x0004 Long value

0x0005 Callback

0x0006 Related to SLVAvail (part of object 1)

0x0007 Related to SLVSpaceMap (part of object 1)

9.2.1.2. KeyFldIDs

The KeyFldIDs contain the index column identifiers of the primary and secondary keys.

A index column identifier entry is 4 bytes of size and consists of:
offset size value Description

0 2 Unknown

2 2 Index column identifier

page 34



offset size value Description

Contains the data type identifier of the 
column

Id
00000000: 00 00 01 00 00 00 02 00  00 00 03 00

Id column identifier (3)

Name
00000000: 00 00 01 00 00 00 02 00  00 00 80 00

Name column identifier (128)

RootObjects
00000000: 00 00 08 00 00 00 80 00

9.2.2. MSysObjids

Column identifier Column name Column type

256 objid Integer 32-bit signed 

257 objidTable Integer 32-bit signed 

258 type Integer 16-bit signed 

First seen in Windows 8 Consumer Preview Windows.edb

9.2.3. MSysLocales

Column identifier Column name Column type

1 Type Integer 8-bit unsigned

2 iValue Integer 32-bit signed

128 Key Binary data 

First seen in Windows 8 Consumer Preview Windows.edb

9.2.4. MSysUnicodeFixupVer1

Column identifier Column name Column type

1 autoinc Currency

256 objidTable Long

257 objidIndex Long

258 keyPrimary Long

page 35



Column identifier Column name Column type

259 keySecondary Long

260 lcid Long

261 sortVersion Long

262 definedVersion Long

263 itag Long

264 ichOffset Long

9.2.5. MSysUnicodeFixupVer2

The “MsysUnicodeFixupVer2” table was introduced in Windows Vista (SP0)?

Column identifier Column name Column type

1 autoinc Currency

256 objidTable Long

257 objidIndex Long

258 keyPrimary Long

259 keySecondary Long

260 lcid Long

261 sortVersion Long

262 definedVersion Long

263 rgitag Long

264 ichOffset Long

9.2.6. MSysDefrag1

Column identifier Column name Column type

1 ObjidFDP Integer 32-bit signed

2 DefragType Integer 8-bit unsigned

3 Sentinel Integer 32-bit signed

4 Status Integer 16-bit signed

256 CurrentKey Large binary data

9.2.7. MSysDefrag2

Column identifier Column name Column type

1 ObjidFDP Integer 32-bit signed

2 Status Integer 16-bit signed

3 PassStartDateTime Integer 64-bit signed

page 36



Column identifier Column name Column type

4 PassElapsedSeconds Integer 64-bit signed

5 PassInvocations Integer 64-bit signed

6 PassPagesVisited Integer 64-bit signed

7 PassPagesFreed Integer 64-bit signed

8 PassPartialMerges Integer 64-bit signed

9 TotalPasses Integer 64-bit signed

10 TotalElapsedSeconds Integer 64-bit signed

11 TotalInvocations Integer 64-bit signed

12 TotalDefragDays Integer 64-bit signed

13 TotalPagesVisited Integer 64-bit signed

14 TotalPagesFreed Integer 64-bit signed

15 TotalPartialMerges Integer 64-bit signed

256 CurrentKey Large binary data

9.3. Template tables

A table definition which uses a template table definition, basically uses a copy of the template table 
and appends the defined column definitions.

E.g. if the template table defines 446 columns and the definition of the last column is a tagged data 
type:
Column identifier Column name Column type

669 Q65a0 Binary data

The first column definition in the table will be column number 447:
Column identifier Column name Column type

256 N67b9 Large binary data

Note that table column identifier is 256 and will also be defined as such in the tagged data type 
definitions.

What about non tagged data types?

10. Indexes
The FDP value in the catalog definition of an index, refers to the FDP of an index page B+-tree 
except for the first index (Id). It will point to the parent table and does not contain index page 
values. It is assumed that this index is build-in.

page 37



10.1. Index flags (group of bits)

The column flags consist of the following values:

Value Identifier Description

0x00000001 JET_bitIndexUnique Duplicate index entries (keys) are disallowed. This 
is enforced when JetUpdate is called, not when 
JetSetColumn is called.

0x00000002 JET_bitIndexPrimary The index is a primary (clustered) index. Every 
table must have exactly one primary index. If no 
primary index is explicitly defined over a table, then 
the database engine will create its own primary 
index.

0x00000004 JET_bitIndexDisallowNull None of the columns over which the index is 
created may contain a NULL value.

0x00000008 JET_bitIndexIgnoreNull Do not add an index entry for a row if all of the 
columns being indexed are NULL.

0x00000010 Unknown
Set if the index contains 3 column identifiers?

0x00000020 JET_bitIndexIgnoreAnyNull Do not add an index entry for a row if any of the 
columns being indexed are NULL.

0x00000040 JET_bitIndexIgnoreFirstNull Do not add an index entry for a row if the first 
column being indexed is NULL.

0x00000080 JET_bitIndexLazyFlush Specifies that the index operations will be logged 
lazily.
JET_bitIndexLazyFlush does not affect the laziness 
of data updates. If the indexing operations is 
interrupted by process termination, Soft Recovery 
will still be able to able to get the database to a 
consistent state, but the index may not be present.

0x00000100 JET_bitIndexEmpty Do not attempt to build the index, because all 
entries would evaluate to NULL. grbit MUST also 
specify JET_bitIgnoreAnyNull when 
JET_bitIndexEmpty is passed. This is a 
performance enhancement. For example if a new 
column is added to a table, then an index is created 
over this newly added column, all of the records in 
the table would be scanned even though they would 
never get added to the index anyway. Specifying 
JET_bitIndexEmpty skips the scanning of the table, 
which could potentially take a long time.

0x00000200 JET_bitIndexUnversioned JET_bitIndexUnversioned causes index creation to 
be visible to other transactions. Normally a session 
in a transaction will not be able to see an index 
creation operation in another session. This flag can 
be useful if another transaction is likely to create the 
same index, so that the second index-create will 
simply fail instead of potentially causing many 

page 38



Value Identifier Description

unnecessary database operations. The second 
transaction may not be able to use the index 
immediately. The index creation operation needs to 
complete before it is usable. The session must not 
currently be in a transaction to create an index 
without version information.

0x00000400 JET_bitIndexSortNullsHigh Specifying this flag causes NULL values to be 
sorted after data for all columns in the index.

0x00000800 JET_bitIndexUnicode Specifying this flag affects the interpretation of the 
lcid/pidxunicde union field in the structure. Setting 
the bit means that the pidxunicode field actually 
points to a JET_UNICODEINDEX structure. See 
JET_UNICODEINDEX. JET_bitIndexUnicode is 
not required to index Unicode data. It is only 
needed to customize the normalization of Unicode 
data.

Values introduced in Windows XP

0x00001000 JET_bitIndexTuples Specifies that the index is a tuple index. See 
JET_TUPLELIMITS for a description of a tuple 
index.

Values introduced in Windows 2003

0x00002000 JET_bitIndexTupleLimits Specifying this flag affects the interpretation of the 
cbVarSegMac/ptuplelimits union field in the 
structure. Setting this bit means that the ptuplelimits 
field actually points to a JET_TUPLELIMITS 
struct to allow custom tuple index limits (implies 
JET_bitIndexTuples). See JET_TUPLELIMITS.

Values introduced in Windows Vista

0x00004000 JET_bitIndexCrossProduct Specifying this flag for an index that has more than 
one key column that is a multi-valued column will 
result in an index entry being created for each result 
of a cross product of all the values in those key 
columns. Otherwise, the index would only have one 
entry for each multi-value in the most significant 
key column that is a multi-valued column and each 
of those index entries would use the first multi-
value from any other key columns that are multi-
valued columns.

For example, if you specified this flag for an index 
over column A that has the values "red" and "blue" 
and over column B that has the values "1" and "2" 
then the following index entries would be created: 
"red", "1"; "red", "2"; "blue", "1"; "blue", "2". 
Otherwise, the following index entries would be 
created: "red", "1"; "blue", "1".

page 39



Value Identifier Description

0x00008000 JET_bitIndexKeyMost Specifying this flag will cause the index to use the 
maximum key size specified in the cbKeyMost field 
in the structure. Otherwise, the index will use 
JET_cbKeyMost (255) as its maximum key size.

0x00010000 JET_bitIndexDisallowTruncatio
n

Specifying this flag will cause any update to the 
index that would result in a truncated key to fail 
with JET_errKeyTruncated. Otherwise, keys will be 
silently truncated. For more information on key 
truncation, see the JetMakeKey function.

11. Notes

11.1. The database metadata table

The database metadata table contains space tree information about the database. The database 
metadata table is always stored as FDP object identifier 1 with parent FDP page number 1.

page 40



Appendix A. References
[MSDN]
Title: Microsoft Developer Network
URL: http://technet.microsoft.com/en-us/library/bb310772%28EXCHG.80%29.aspx
URL: http://technet.microsoft.com/en-us/library/cc961824.aspx
URL: http://msdn.microsoft.com/en-us/library/dd207764(v=PROT.13).aspx 
URL: http://msdn.microsoft.com/en-us/library/ee441458(v=PROT.13).aspx 

[MSDN-WIN7]
Title: 6 New ESENT features in Windows 7
URL: http://blogs.msdn.com/b/laurionb/archive/2009/08/18/6-new-esent-features-in-
windows-7.aspx

[NTLCID]
Tile: Locale identifier (LCID) definitions
URL: https://downloads.sourceforge.net/project/libpff/documentation/MAPI%20definitions/

Appendix B. GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. 
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license 
document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document 
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, 
with or without modifying it, either commercially or noncommercially. Secondarily, this License 
preserves for the author and publisher a way to get credit for their work, while not being considered 
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must 
themselves be free in the same sense. It complements the GNU General Public License, which is a 
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software 
needs free documentation: a free program should come with manuals providing the same freedoms 
that the software does. But this License is not limited to software manuals; it can be used for any 
textual work, regardless of subject matter or whether it is published as a printed book. We 
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by 
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants 
a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated 
herein. The "Document", below, refers to any such manual or work. Any member of the public is a 
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work 

page 41



in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, 
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals 
exclusively with the relationship of the publishers or authors of the Document to the Document's 
overall subject (or to related matters) and contains nothing that could fall directly within that overall 
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not 
explain any mathematics.) The relationship could be a matter of historical connection with the 
subject or with related matters, or of legal, commercial, philosophical, ethical or political position 
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those 
of Invariant Sections, in the notice that says that the Document is released under this License. If a 
section does not fit the above definition of Secondary then it is not allowed to be designated as 
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any 
Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover 
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format 
whose specification is available to the general public, that is suitable for revising the document 
straightforwardly with generic text editors or (for images composed of pixels) generic paint 
programs or (for drawings) some widely available drawing editor, and that is suitable for input to 
text formatters or for automatic translation to a variety of formats suitable for input to text 
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of 
markup, has been arranged to thwart or discourage subsequent modification by readers is not 
Transparent. An image format is not Transparent if used for any substantial amount of text. A copy 
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo 
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of 
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats 
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD 
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or 
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are 
needed to hold, legibly, the material this License requires to appear in the title page. For works in 
formats which do not have any title page as such, "Title Page" means the text near the most 
prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely 
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here 
XYZ stands for a specific section name mentioned below, such as "Acknowledgements", 
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you 

page 42



modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License 
applies to the Document. These Warranty Disclaimers are considered to be included by reference in 
this License, but only as regards disclaiming warranties: any other implication that these Warranty 
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, 
provided that this License, the copyright notices, and the license notice saying this License applies to 
the Document are reproduced in all copies, and that you add no other conditions whatsoever to 
those of this License. You may not use technical measures to obstruct or control the reading or 
further copying of the copies you make or distribute. However, you may accept compensation in 
exchange for copies. If you distribute a large enough number of copies you must also follow the 
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display 
copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the 
Document, numbering more than 100, and the Document's license notice requires Cover Texts, you 
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover 
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly 
and legibly identify you as the publisher of these copies. The front cover must present the full title 
with all words of the title equally prominent and visible. You may add other material on the covers in 
addition. Copying with changes limited to the covers, as long as they preserve the title of the 
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones 
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must 
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with 
each Opaque copy a computer-network location from which the general network-using public has 
access to download using public-standard network protocols a complete Transparent copy of the 
Document, free of added material. If you use the latter option, you must take reasonably prudent 
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy 
will remain thus accessible at the stated location until at least one year after the last time you 
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before 
redistributing any large number of copies, to give them a chance to provide you with an updated 
version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 
and 3 above, provided that you release the Modified Version under precisely this License, with the 
Modified Version filling the role of the Document, thus licensing distribution and modification of the 
Modified Version to whoever possesses a copy of it. In addition, you must do these things in the 
Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, 

page 43



and from those of previous versions (which should, if there were any, be listed in the History 
section of the Document). You may use the same title as a previous version if the original 
publisher of that version gives permission. 

• B. List on the Title Page, as authors, one or more persons or entities responsible for 
authorship of the modifications in the Modified Version, together with at least five of the 
principal authors of the Document (all of its principal authors, if it has fewer than five), unless 
they release you from this requirement. 

• C. State on the Title page the name of the publisher of the Modified Version, as the 
publisher. 

• D. Preserve all the copyright notices of the Document. 
• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright 

notices. 
• F. Include, immediately after the copyright notices, a license notice giving the public 

permission to use the Modified Version under the terms of this License, in the form shown in 
the Addendum below. 

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts 
given in the Document's license notice. 

• H. Include an unaltered copy of this License. 
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at 

least the title, year, new authors, and publisher of the Modified Version as given on the Title 
Page. If there is no section Entitled "History" in the Document, create one stating the title, 
year, authors, and publisher of the Document as given on its Title Page, then add an item 
describing the Modified Version as stated in the previous sentence. 

• J. Preserve the network location, if any, given in the Document for public access to a 
Transparent copy of the Document, and likewise the network locations given in the 
Document for previous versions it was based on. These may be placed in the "History" 
section. You may omit a network location for a work that was published at least four years 
before the Document itself, or if the original publisher of the version it refers to gives 
permission. 

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the 
section, and preserve in the section all the substance and tone of each of the contributor 
acknowledgements and/or dedications given therein. 

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their 
titles. Section numbers or the equivalent are not considered part of the section titles. 

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the 
Modified Version. 

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with 
any Invariant Section. 

• O. Preserve any Warranty Disclaimers. 

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary 
Sections and contain no material copied from the Document, you may at your option designate some 
or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the 
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of 
your Modified Version by various parties—for example, statements of peer review or that the text 
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words 
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one 
passage of Front-Cover Text and one of Back-Cover Text may be added by (or through 

page 44



arrangements made by) any one entity. If the Document already includes a cover text for the same 
cover, previously added by you or by arrangement made by the same entity you are acting on behalf 
of, you may not add another; but you may replace the old one, on explicit permission from the 
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their 
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms 
defined in section 4 above for modified versions, provided that you include in the combination all of 
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant 
Sections of your combined work in its license notice, and that you preserve all their Warranty 
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant 
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same 
name but different contents, make the title of each such section unique by adding at the end of it, in 
parentheses, the name of the original author or publisher of that section if known, or else a unique 
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license 
notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original 
documents, forming one section Entitled "History"; likewise combine any sections Entitled 
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled 
"Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this 
License, and replace the individual copies of this License in the various documents with a single copy 
that is included in the collection, provided that you follow the rules of this License for verbatim 
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this 
License, provided you insert a copy of this License into the extracted document, and follow this 
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or 
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the 
copyright resulting from the compilation is not used to limit the legal rights of the compilation's users 
beyond what the individual works permit. When the Document is included in an aggregate, this 
License does not apply to the other works in the aggregate which are not themselves derivative 
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the 
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed 
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if 
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the 
whole aggregate.

8. TRANSLATION

page 45



Translation is considered a kind of modification, so you may distribute translations of the Document 
under the terms of section 4. Replacing Invariant Sections with translations requires special 
permission from their copyright holders, but you may include translations of some or all Invariant 
Sections in addition to the original versions of these Invariant Sections. You may include a 
translation of this License, and all the license notices in the Document, and any Warranty 
Disclaimers, provided that you also include the original English version of this License and the 
original versions of those notices and disclaimers. In case of a disagreement between the translation 
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the 
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided 
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and 
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright 
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally 
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the 
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright 
holder notifies you of the violation by some reasonable means, this is the first time you have received 
notice of violation of this License (for any work) from that copyright holder, and you cure the 
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have 
received copies or rights from you under this License. If your rights have been terminated and not 
permanently reinstated, receipt of a copy of some or all of the same material does not give you any 
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation 
License from time to time. Such new versions will be similar in spirit to the present version, but may 
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that 
a particular numbered version of this License "or any later version" applies to it, you have the option 
of following the terms and conditions either of that specified version or of any later version that has 
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a 
version number of this License, you may choose any version ever published (not as a draft) by the 
Free Software Foundation. If the Document specifies that a proxy can decide which future versions 
of this License can be used, that proxy's public statement of acceptance of a version permanently 
authorizes you to choose that version for the Document.

11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that 
publishes copyrightable works and also provides prominent facilities for anybody to edit those 
works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor 
Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus 
published on the MMC site.

page 46



"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by 
Creative Commons Corporation, a not-for-profit corporation with a principal place of business in 
San Francisco, California, as well as future copyleft versions of that license published by that same 
organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another 
Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were 
first published under this License somewhere other than this MMC, and subsequently incorporated in 
whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus 
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the 
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

page 47


	1. Overview
	1.1. Test version
	1.2. File structure

	2. (Database) file header
	2.1. File type
	2.2. File format version and revision
	2.3. Database state

	3. Hierarchical page-based storage
	3.1. Page header
	3.1.1. Changes in Exchange 2003 SP1
	3.1.2. Changes in Windows 7
	3.1.3. Page flags

	3.2. Page tags
	3.2.1. Page tag - format revision 12 and earlier
	3.2.2. Page tag - format revision 17 and later
	3.2.3. Page tag flags

	3.3. Page B+-tree
	3.3.1. Empty page
	3.3.2. Root page
	3.3.2.1. Root page header

	3.3.3. Branch page
	3.3.3.1. Branch page header
	3.3.3.2. Branch page entry

	3.3.4. Leaf page values
	3.3.4.1. Leaf page header
	3.3.4.2. Leaf page entry
	3.3.4.2.1. Leaf page entry - format revision 17 and later



	3.4. Page values
	3.4.1. Space tree page values
	3.4.1.1. Space tree leaf page header
	3.4.1.2. Space tree leaf page entry

	3.4.2. Index page values
	3.4.2.1. Index leaf page entry data

	3.4.3. Long value page values
	3.4.4. Table page values


	4. Data definitions
	4.1. Data definition header
	4.2. Data type definitions
	4.2.1. Variable size data type size array entry
	4.2.2. The tagged data type definitions - format revision 2
	4.2.3. The tagged data type definitions - format revision 9 and later
	4.2.3.1. Tagged data type offset array entry - format revision 9 and later
	4.2.3.2. Tagged data type flags


	4.3. Example: the catalog (data type) definition
	4.4. Long Values
	4.5. Mutli values

	5. Database
	5.1. Database signature
	5.1.1. Database time


	6. Columns
	6.1. Column type
	6.2. Column flags (group of bits)
	6.3. Compression
	6.3.1. 7-bit compression
	6.3.2. XPRESS compression


	7. Backup
	7.1. Backup information

	8. Transaction log
	8.1. Log information
	8.2. Log position
	8.3. (Backup) log time

	9. Tables
	9.1. Table flags (group of bits)
	9.2. metadata tables
	9.2.1. Catalog (MSysObjects and MSysObjectsShadow)
	9.2.1.1. Catalog types
	9.2.1.2. KeyFldIDs

	9.2.2. MSysObjids
	9.2.3. MSysLocales
	9.2.4. MSysUnicodeFixupVer1
	9.2.5. MSysUnicodeFixupVer2
	9.2.6. MSysDefrag1
	9.2.7. MSysDefrag2

	9.3. Template tables

	10. Indexes
	10.1. Index flags (group of bits)

	11. Notes
	11.1. The database metadata table


