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Introduction

This package contains various algorithms related to finite dimensional nilpotent associative algebras. It also contains
many group-theoretical functions related to the Modular Isomorphism Problem. We first give a brief introduction to
finite dimensional nilpotent algebras and then an overview of the main algorithms.

Associative algebras and nilpotency

Let A be an associative algebra of dimension d over a field F. Let {b;,...,b;} be a basis for A. We identify the
element x1by + ... + x4by of A with the element (xy,...,x;) of F 4 The multiplication of A can then be described by
a structure constants table: a 3-dimensional array with entries a;;; € F satisfying that

d
bib; = Z a;j by
k=1

An associative algebra A is nilpotent if its power series terminates at the trivial ideal of A; that is
A>A*> . > A > AT = {0}

where A’ is the ideal of A generated by all products of length at least j. The length ¢ of the power series is also called
the class of A and the dimension of A/A? is the rank of A. Note that A is generated by dim(A/A?) elements. Clearly,
A does not contain a multiplicative identity.

For computational purposes we describe a nilpotent associative algebra by a weighted basis and a description of the
corresponding structure constants table. A basis of a nilpotent associative algebra A is weighted if there is a sequence
of weights (wy, ..., wy) so that
A = (bi | wi > j)-

Note that AA/ = A/*! for every j. Thus it is possible to choose all basis elements of weight at least 2 so that b; = bb;
holds for some k and /, where by, is of weight 1 and b, is of weight w; — 1. This feature allows an effective description
of A via a nilpotent structure constants table. This contains the structure constants a;; for all i with w; = 1 and
1 < j,k < d. For i with w; > 1 it either contains a description as b; = bib; or the structure constants a;; for
1 <j,k < d. It may also contain both or some partial overlap of these informations.

Isomorphisms and Automorphisms

Let A be a finite dimensional nilpotent associative algebra over a finite field. This package contains an implementation
of the methods in [Eic08] which allow the determination of the automorphism group Auf(A) and a canonical form
Can(A).

The automorphism group is given by generators and is represented as a subgroup of GL(dim(A), F). Also the order of
Aut(A) is available.

A canonical form Can(A) for A is a nilpotent structure constants table for A which is unique for the isomorphism type
of A; that is, two algebras A and B are isomorphic if and only if Can(A) = Can(B) holds. Hence the canonical form
can be used to solve the isomorphism problem.
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The Modular Isomorphism Problem

The modular isomorphism problem asks whether an isomorphism of algebras F,G = [F,H implies an isomorphism
of groups G = H for two p-groups G and H and [, the field with p elements. This problem was open for a long time
until first counterexamples for the prime p = 2 were found in [GLMdR22]. It remains open for odd primes and many
other interesting classes of groups.

Computational approaches have been used to investigate the modular isomorphism problem. Based on an algorithm by
Roggenkamp and Scott [RS93], Wursthorn [Wur93] described an algorithm for checking the modular isomorphism
problem; that is, he described an algorithm for checking whether two modular group algebras F,G and F,H are
isomorphic, where G and H are finite p-groups. This algorithm has been implemented in C by Wursthorn and has been
applied to the groups of order dividing 27 without finding a counterexample, see [BKRW99]. The implementation of
Wursthorn appears lost, but is in any case not publicly available.

This package contains an implementation of the new algorithm described in [EicO8] for checking isomorphism of
modular group algebras. It is based on the fact that the Jacobson radical J(FG) is nilpotent if FG is a modular
group algebra for G a finite p-group and FG is isomorphic to FH if and only if the radicals J(FG) and J(FH) are
isomorphic. Hence the automorphism group and canonical form algorithm of this package apply and can be used to
solve the isomorphism problem for modular group algebras of finite p-groups. Note that in this setting the Jacobson
radical of the group algebra FG equals its augmentation ideal.

The methods of this package have been used to study the modular isomorphism problem for the groups of order
dividing 3% and 28 ([Eic08]) and for the groups of order 2° ([EK11]). It was later used to study also groups of order
37 and 5° ((MM22]).

A property of a group G is called F-invariant, if an isomorphism of F-algebras FG = FH implies the same property
for H. In the context of the Modular Isomorphism Problem, if G is a finite p-group, then an IF,-invariant is simply
called invariant. Many invariants of G are known and the package provides functions for them, as well as programs
which easily allow to compare all the implemented invariants quickly for a given list of groups.

It also remains open, if replacing the field IF, in the Modular Isomorphism Problem with a bigger field of characteristic
p will change the outcome of the problem for a given pair of groups. The package includes several functions which
allow to investigate this question by applying the algorithm for the same groups varying the field.

A nilpotent quotient algorithm

Given a finitely presented associative algebra A over an arbitrary field F, this package contains an algorithm to deter-
mine a nilpotent structure constants table for the class-c nilpotent quotient of A, i.e. the algebra A/A°*!. See [Eicl1]
for details on the underlying algorithm.

Kurosh Algebras

Let F(d, F) denote the free non-unital associative algebra on d generators over the field F. Then
A(d,n,F) =F(d,F)/{{(w" |w € F(d,F)))
is the Kurosh Algebra on d generators of exponent n over the field F. Kurosh Algebras can be considered as an

algebra-theoretic analogue to Burnside groups.

This package contains a method that allows to determine A(d, n, F') for given d, n, F. This can also be used to determine
A(d,n, F) for all fields of a given characteristic. We refer to [Eic11] for details on the algorithms.

This package also contains a database of Kurosh Algebras that have been determined with the methods of this package.



Tables

Finite dimensional algebras can be described by structure contants tables. For nilpotent algebras it is not neccessary
to store a full structure contants table. To use this feature, we introduce nilpotent structure constants tables or just
nilpotent tables for short. These are used heavily throughout the package.

2.1 Nilpotent tables

Let A be a finite-dimensional nilpotent associative algebra over a field F. Let (by, ..., b,) be a weighted basis of A;
that is, a basis with weights (wy, ..., wy) satifying that A/ = (b; | w; > j). Let

bib; = Zaii/}kbk'
3

The nilpotent table T for A (with respect to the basis (b1, . .., b)) is a record with the following entries.

dim
the dimension d of A;

fd
the field F of A;

wgs
the weights (w1, ..., wy);

rnk
the rank e of A (i.e. the dimension of A/A?).

wds
a list of length d with holes; If the ith entry is bounded, then it is of the form [k, /]. In this case, w; > 1 and
b, = byb; and wy = 1 and w; = w; — 1 holds.

tab
a partial structure contants table for A; If 7abli][j][k] is bounded, then it is a; ;4. Note that either a full vector
tabli]]j] is given or tabli][j] is unbounded. The entry tab|i][j][k] is available for 1 < i,j < e and if wds][i] is
unbounded.

com

optional; If this is bounded, then it is a boolean. If this boolean is true, then the algebra is assumed to be
commutative.

In a nilpotent table not all structure constants are readily available. The following function determines the structure
constants for the product b;b;. If the global variable STORE is true, then the function stores the computed entry in the
table.

GetEntryTable( T, i, j ) F

The result of the multiplication of the elements v and w in T can be obtained using the following function. An example
of its use is provided below.
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2» MultByTable( T, v, w ) F
We consider two nilpotent tables as equal, if they would be equal if the full set of structure constants tables would be
bound. The following function provides an effective check for this.

3» CompareTables( T1, T2 ) F

A nilpotent table contains redundant information and hence can be inconsistent. The next functions can be used to
check this to some extend.

4» CheckAssociativity( T ) F

Checks that (b;b;)by = b;i(b;by) for all i, j, k. Note that this may be time-consuming.

5» CheckCommutativity( T ) F

Checks whether T defines a commutative algebra and sets the entry com accordingly.

6» CheckConsistency( T ) F

Checks that wds and fab are compatible. This assumes that CheckAssociativity returns true.
All later described algorithms of this package assume that the tables considered are fully consistent.

gap> T := rec( dim := 3,
f1d := GF(2),
rnk := 2,
wgs := [ 1, 1, 21,
wds := [ ,, [ 2, 1
tab := [1 );;
gap> T.tabl[1] ([0,0,0],[0,0,1]] * One(T.fld);;
gap> T.tab[2] := [[0,0,1],[0,0,0]] * One(T.fld);;
gap> GetEntryTable( T, 3, 1 );
[ 0%xZ(2), 0%Z(2), 0%Z(2) ]

11,

2.2 Algebras in the GAP sense

We provide functions to convert back and forth between algebras in the GAP sense and nilpotent tables.

1» AlgebraByTable( T ) F
> NilpotentTable( A ) F

Note that the second function fails if A is not nilpotent.

For modular group algebras of p-groups, the group algebra itself is not nilpotent (as it contains a unit), but its Jacobson
radial is. The following function determines a nilpotent table for the Jacobson radical.

2» NilpotentTableOfRad( FG ) F

gap> A := GroupRing(GF(2), SmallGroup(8,3));

<algebra-with-one over GF(2), with 3 generators>

gap> NilpotentTableOfRad(A);

rec( dim := 7, fld := GF(2), rnk := 2,

tab :=
C
[ [ 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2) 1,

[ 0%Z(2), 0%Z(2), Z(2)70, 0%Z(2), 0%Z(2), 0*Z(2), 0*Z(2) 1,
[ 0%2(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0*Z(2) ],
[ 0%Z(2), 0%xZ(2), 0%Z(2), 0*xZ(2), Z(2)°0, 0*xZ(2), 0%Z(2) 1,
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[ 0%xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2) 1,

[ 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)"0 1,

[ 0%xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0%z(2) 1 1,
[ [ 0xZ(2), 0%xZ(2), Z(2)"0, Z(2)"0, Z(2)"0, Z(2)"0, Z(2)°0 1,

[ 0xZ(2), 0%Z(2), 0%xZ(2), 0*Z(2), 0%Z(2), 0*Z(2), 0xZ(2) 1,

[ 0%xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%z(2), Z(2)"0, z(2)°0 1,

[ 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)~0, 0%z(2) 1,

[ 0xZ(2), 0%xZ(2), 0%Z(2), 0xZ(2), 0xZ(2), 0%xZ(2), Z(2)"0 1,

[ 0%xZ(2), 0*Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0*Z(2), 0%Z(2) 1,

[ 0xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*xZ(2), 0%Z(2), 0xz(2) 1 1,,

[ [ 0xZ(2), 0xZ(2), 0%Z(2), 0xZ(2), Z(2)"0, 0xZ(2), 0*z(2) 1,

[ 0xZ(2), 0%Z(2), 0xZ(2), 0*Z(2), 0xZ(2), Z(2)"0, 0xZ(2) 1,

[ 0xZ(2), 0xZ(2), 0%Z(2), 0*xZ(2), 0xZ(2), 0%xZ(2), Z(2)"0 1,

[ 0%xZ(2), 0%Z(2), 0*Z(2), 0*Z(2), 0%xZ(2), 0*Z(2), 0%Z(2) 1,

[ 0xZ(2), 0%Z(2), 0%xZ(2), 0*Z(2), 0xZ(2), 0*Z(2), 0xZ(2) 1],

[ 0xZ(2), 0%Z(2), 0%xZ(2), 0*Z(2), 0xZ(2), 0*Z(2), 0xZ(2) 1,

[ 0xZ(2), 0%Z(2), 0%xZ(2), 0%Z(2), 0xZ(2), 0%Z(2), 0xz(2) 1 11,
wds := [ ,, [1,21,, [1,41, (2,41, [1,611,
wgs := [ 1,1, 2,2,3,3,41)

2.3 Tables for the Modular Isomorphism Problem

A special kind of nilpotent table is available in the context of the Modular Isomorphism Problem. Let G be a finite
group, F a field of characteristic p and I(FG) the augmentation ideal of FG which equals its radical and is a nilpotent
ideal. Two functions allow to compute class-n quotient of I(FG), i.e. I(FG)/I(FG)""!. The output is a nilpotent table
for this quotient, but in addition to the standard entries of a nilpotent table it contains further entries, which allow more
efficient computations and can also facilitate manual calculations. This allows to determine the class-n quotient of the
augmentation ideal without computing the full augmentation ideal using NilpotentTableOfRad. The corresponding
table can be computed by

TableOfRadQuotient( FG, n ) F
or
ModIsomTable( G, n, [f] ) F

Here ModlsomTable(G,n) will produce the quotient with respect to the algebra F,G, while ModIsomTable(G, n,f)
will do the same for the algebra IF;G. If ModIsomTable is executed as ModIsomTable(G, n) it provides the table with
respect to the algebra F,G.

The components dim, fld, rnk, tab, wgs, wds remain unchanged from a usual nilpotent table. The additional compo-
nents are commwords, powwords and pre. These new components contain additional information on precisely which
basis of I(FG)/I(FG)"*! is used and what the result of multiplying basis elements is. We explain how users can
understand how the basis looks and how they can multiply two elements in the algebra. The components T.commords
and T.powwords contain information on how the elements of the basis behave with respect to commutators and p-th
powers. The component 7T'.pre contains information on the construction of the basis and we describe it in more detail.

The dimension of I(FG)/I(FG)""! is recorded in T.dim. The basis of I(FG)/I(FG)"*! is found as in the theory of
Jennings going back to [Jen41], cf. [MM22] for the information needed here. The elements of G chosen to provide
the basis of subsequent quotients of dimension subgroups are recorded in T .pre.jen.pcgs. Let us call these elements
81, --,8m- Note that |G| = p™. The weights of the elements g, —1, . .., g,,— 1 are recorded in T .pre.jen.weights. If now
ris an integer smaller than T.dim+ 1, then the r-th element of the basis of I(FG) /I(FG)""'is (gy — 1) -... (gn—1)"
where [e_1, ..., e-m| = T.pre.exps|r]. The weight of this element is recorded in T.wgs[r] and also T.pre.weights|r|.
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Moreover, the positions of g; — 1,..., g, — | in the chosen basis of T are recorded in T.pre.poswone. We elaborate
using an example.

We consider the group G = SmallGroup(3’,19). The following calculation shows that I(FG)/I(FG)® has dimension
135 and that the full augmentation ideal /(FG) has dimension 2186.

gap> G := SmallGroup(3°7, 19);;
gap> T := ModIsomTable(G, 8);;
gap> T.dim;

135

gap> FG := GroupRing(GF(3), G);;

gap> TT := TableOfRadQuotient(FG, 8);;
gap> TT.dim;

135

gap> T := ModIsomTable(G, 38);;
gap> T.dim;
2186

gap> T := ModIsomTable(G, 39);;
gap> T.dim;
2186

We next consider an example how the basis used can be recognized.

gap> G := DihedralGroup(8);;

gap> T := ModIsomTable(G, 4);;

gap> T.dim;

7

gap> pcgs := T.pre.jen.pcgs;

Pcgs([ f1, £2, £3 1)

gap> List(pcgs, Order);

[ 2,4, 2]

gap> pcgs[3] in Center(G);

true

gap> T.pre.exps{[1..7]1};

trt+¢ o0,01,7160,1,01,01,1,01,L0,0,11,[1,0,11]1,[0,1,11,
[1, 1, 11]]

We conclude that I(kG) /1(kG)’ is 7-dimensional and if we denote by a a reflection and by b a non-central rotation in
G, then the basis used by T is, in this order: (a — 1), (b—1), (a—1)(b—1), (b* — 1), (a—1)(b* — 1), (b—1)(b* - 1),
(a—1)(b—1)(b*—1).

Say continuing the previous example we want to multiply (b — 1)+ (@ — 1)(b— 1)+ (a— 1)(b* — 1) and (a — 1) +
(b—1)+ (1> —1).

gap> v := Z(2)°0%[0,1,1,0,1,0,0];

[ 0xZ(2), Z(2)°0, Z(2)"0, 0%Z(2), Z(2)"0, 0%Z(2), 0*Z(2) ]
gap> w := Z(2)°0%[1,1,0,1,0,0,0];

[ Z(2)"0, Z(2)"0, 0%xZ(2), Z(2)"0, 0xZ(2), 0%Z(2), 0xZ(2) 1]
gap> MultByTable(T,v,w);

[ 0xZ(2), 0%Z(2), Z(2)"0, 0%Z(2), Z(2)"0, 0%Z(2), 0*xZ(2) 1]
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So the resultis (@ — 1)(b — 1) + (a — 1)(b* — 1).

To facilitate the translation of elements of the group algebra and a corresponding table of a quotient of the augmenta-

tion ideal the functions
MIPElementTableToAlgebra( v, T, FG )
and

MIPElementAlgebraToTable( el, FG, T )

can be used. In the second function of course only a possible representative of v in FG is provided. Also, only
elements from the augmentation ideal of F'G can be represented using MIPElementAlgebraToTable. These functions
can be used for instance to obtain representatives in the same class modulo a power of the augmentation ideal which

are more practical to work with, as the following example shows.

gap> G := SmallGroup(3°7, 19);
<pc group of size 2187 with 7 generators>
gap> T := ModIsomTable(G, 4);;
gap> FG := GroupRing(GF(3), G);
<algebra-with-one over GF(3), with 7 generators>
gap> iota := Embedding(G, FG);
<mapping: Group( [ f1, f2, £f3, f4, f5, f6, f7
1 ) -> AlgebraWithOne( GF(3), ... ) >
gap> a := (T.pre.jen.pcgs[1]) “iota;
(Z(3)"0)*f1
gap> b := (T.pre.jen.pcgs[2]) "iota;
(Z(3)"0)*£f2
gap> z := One(F&);
(Z(3)"0)*<identity> of ...
gap> r := (z + (a-z)*(b-z) )"-1;;
gap> Size(Support(r-z));
1376
gap> el := MIPElementAlgebraToTable(r-z, FG, T);

[ 0%xZ(3), 0%Z(3), 0%*Z(3), Z(3), 0%Z(3), 0*Z(3), 0%Z(3), 0*Z(3), 0*Z(3),
0%Z(3), 0%Z(3), 0%Z(3), 0%Z(3), Z(3)~0, 0%Z(3), Z(3)"0, 0%Z(3), 0%Z(3),

0%Z(3), 0%Z(3), 0*Z(3), 0%Z(3), 0*Z(3), 0%Z(3) ]
gap> MIPElementTableToAlgebra(el, T, FG);

(Z(3))*<identity> of ...+(Z(3)"0)*£3+(Z(3)"0)*£172+(Z(3))*f1*£2+(Z(3))*f1*£3+(
Z(3)70)*£272+(Z(3) ) *x£2*x£3+(Z(3) "0) *£172%£2+(Z(3) "0) *£1x£2"2+(Z(3) "

0) *f1xf2*£f3+(Z(3) "0)*f1"2xf2"2

We illustrate the information in T.pre.poswone:

gap> d := (T.pre.jen.pcgs[4]) iota;
(Z(3)"0)*f4
gap> el := MIPElementAlgebraToTable(d-z, FG, T);

[ 0xZ(3), 0%Z(3), 0%Z(3), 0*Z(3), 0%Z(3), 0%*Z(3), 0%Z(3), 0%*Z(3), 0*Z(3),
0%Z(3), Z(3)"0, 0%Z(3), 0%Z(3), 0%Z(3), 0%Z(3), 0%*Z(3), 0%Z(3), 0%*Z(3),

0%Z(3), 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0%Z(3) ]
gap> Position(last, Z(3)70);
11
gap> T.pre.poswone [4];
11
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and Canonical Forms

We refer to [Eic08] for background on the algorithms used in this Chapter. Throughout the chapter, we assume that '
is a finite field.

3.1 Automorphism groups

Let T be a nilpotent table over F. The following function can be used to determine the automorphism group of the
algebra described by T. The automorphism group is determined as subgroup of GL(T.dim, T fld) given by generators
and its order. There is a variation available to determine the automorphism group of a modular group algebra FG,
where F is a finite field and G is a p-group.

AutGroupOfTable( T ) F
AutGroupOfRad( FG ) F

In both cases, the automorphism group is described by a record. The matrices in the lists g/Aufos and agAutos generate
together the automorphism group. The matrices in agAutos generate a p-group. The entry size contains the order of
the automorphism group.

3.2 Canonical forms

Let T be a nilpotent table. The following function can be used to determine the automorphism group of 7 if the
underlying field of T is finite. The canonical form is a nilpotent table which is unique for the isomorphism type of the
algebra defined by 7. Again there a variation available for modular group algebras.

CanonicalFormOfTable( T ) F
CanonicalFormOfRad( FG ) F

The automorphism group of T is determined as a side-product of computing the canonical form. The following func-
tions can be used to return both.

CanoFormWithAutGroupOfTable( T ) F
CanoFormWithAutGroupOfRad( FG ) F

In both cases, these functions return a record with entries cano and auto.

3.3 Example of canonical form computation

We compute the automorphism group and a canonical form for the modular group algebra of the dihedral group of
order 8.

gap> A := GroupRing(GF(2), SmallGroup(8,3));;
gap> T := TableByWeightedBasisOfRad(4);;
gap> C := CanoFormWithAutGroupOfTable(T);;

# check that the canonical form is not equal to T
gap> CompareTables(C.cano, T);
false
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# the order of the automorphism group
gap> C.auto.size;
512

# the entries of the canonical table as far as they are bounded
gap> C.cano.tab;
[ [ <a GF2 vector of length 7>, <a GF2 vector of length 7>,
[ 0xZ(2), 0%Z(2), 0%xZ(2), 0%Z(2), Z(2)°0, 0*Z(2), 0*xZ(2) 1,
[ 0xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0%xZ(2) ],
[ 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2) 1,
[ 0%Z(2), 0%xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Zz(2), z(2)"0 ],
[ 0xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0xZ(2), 0%Z(2), 0xzZ(2) 1 1,
[ <a GF2 vector of length 7>, <a GF2 vector of length 7>,
[ 0xZ(2), 0%Z(2), 0*Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0xZ(2) 1,
[ 0xZ(2), 0%xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)"0, 0%Z(2) 1,
[ 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Zz(2), z(2)°0 ],
[ 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2) 1,
[ 0xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0xZ(2) 1 1,
[ [ 0%Z(2), 0%Z(2), 0*%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2) 1],
[ 0%Z(2), 0%xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)"0, 0%Z(2) 1,
[ 0xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), Z(2)"0 1,
[ 0xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0xZ(2), 0%Z(2), 0xz(2) 1 1,
[ [ 0xZ(2), 0%Z(2), 0*xZ(2), 0xZ(2), Z(2)~0, 0xZ(2), 0%xZ(2) 1,
[ 0xZ(2), 0%Z(2), 0%xZ(2), 0%Z(2), 0*Z(2), 0*Z(2), 0*xZ(2) 1,
[ 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0*Z(2), 0*Z(2) 1],
[ 0xZ(2), 0%Z(2), 0%Z(2), 0%Z(2), 0xZ(2), 0%Z(2), Z(2)"0 1 1,
[ [ 0xZ(2), 0%xZ(2), 0*Z(2), 0xZ(2), 0*Z(2), 0xZ(2), 0*Z(2) 1,
[ 0xZ(2), 0%Z(2), 0%xZ(2), 0%Z(2), 0xZ(2), 0%Z(2), Z(2)"0 1 1,
[ [ 0xZ(2), 0*%Z(2), 0%Z(2), 0%Z(2), 0xZ(2), 0*Z(2), Z(2)"0 1,
[ 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0*Z(2), 0%xZ(2) 1 1 1]

11
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The modular
isomorphism problem

Applications of the methods in this package include the study of the modular isomorphism problems for the groups
of small order from the SmallGroupLibrary - first for groups of order dividing 2%, 3¢ and 2° [Eic08] [EK11] and later
also 37 and 5° [MM22]. This section contains the functions used for this purpose as well as an overview of how the
Modular Isomorphism Problem can be studied for any set of groups using on one hand group-theoretical invariants
and on the other hand the canonical form of nilpotent algebras.

4.1 Computing bins and checking bins

A set of groups which share all the group-theoretical invariants implemented in the package is called bin. To determine
such bins the main function available is:

BinsByGT( p, n, [L], [falsel] ) F

If the function is called as BinsByGT(p,n), then it returns a partition of the list [1..NumberSmallGroups(p™n)] into
sublists so that the groups in the corresponding lists share all the group-theoretical invariants, i.e. the modular group
algebras of two groups SmallGroup(pn, i) and SmallGroup(p“n, j) over the field IF, can not be isomorphic if i and j
are in different lists.

If the function is called as BinsByGT (p, n, L), then L must be a list of groups of order p" and the function will return a
partition of the groups of L which share all the group-theoretical invariants. Alternatively, L can be a list of group Id’s
of groups of order p".

If the function is called as BinsByGT (p, n, L, false) then L must be a list of groups of order p" and false disactivates
the calculation of the dimensions of the second cohomology groups. This can be switched off as for some type of
groups GAP can not apply the needed functions and since computing the second cohomology groups is arguably the
hardest of the invariants to test manually.

Several variations of BinsByGT are available. The first two apply to the case when a list of groups is being studied
instead of group Id’s.

MIPSplitGroupsByGroupTheoreticalInvariants ( L ) F

does the same as BinsByGT (p,n, L) but computes the numbers p and » itself. The input variable must be a list of
groups of the same order. Similarly

MIPSplitGroupsByGroupTheoreticalInvariantsNoCohomology (L) F

computes BinsByGT (p, n, L, false).

Moreover, all the three functions described before have variations where only those group-theoretical invariants are
computed that are known to be F-invariants over any field IF of characteristic p. The input and output of these functions
is exactly as for the three previous functions.
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BinsByGTAllFields(p, n , [L], [falsel) F
MIPSplitGroupsByGroupTheoreticalInvariantsAl1Fields (L) F
MIPSplitGroupsByGroupTheoreticalInvariantsAllFieldsNoCohomology (L) F

The group-theoretical invariants used by the function BinsByGT and its variations are described below. Moreover, GAP
prints more or less information on the progress inside these functions, if InfoModIsom is set to 1 or 0, respectively.
Examples of the use of the functions are included below.

The main function to apply the algorithm computing the canonical form of nilpotent algebras in the context of the
Modular Isomorphism Problem is:

MIPSplitGroupsByAlgebras( [p, nl, bin, [f] ) F

If MIPSplitGroupsByAlgebras(p, n, bin, [f]) is called then the algebras of groups of order p" with group Id’s contained
in bin are studied. The underlying field is of order p/ or, if f is not given, of order p.

If the function is called as MIPSplitGroupsByAlgebras(bin, [f]) then bin must be a list of groups of the same prime
power order and the function studies the group algebras of the groups in bin over the field with p/ elements or, if no f
is given, of order p.

More precisely, in the first case when bin is a list of integers, for i € bin let G; denote SmallGroup(p™n,i). In the
second case G; just runs through the groups contained in bin. Denote by A; the augmentation ideal of FG; where F
is the field of order p/ or simply p, if f is not given. The function computes and compares the canonical forms of the
algebras A; /A’ for every i € bin and increasing natural number j.

At each level j it splits the current bins into sub-bins according to the different canonical forms of A; /Ajl Bins of length
1 are then discarded.

The function returns if no further bins are available and provides information at which level the splitting of the bins
took place.

For more evolved calculations one can use the function
MIPBinSplit(p, n, k, start, step, L, [f])

Given a list L of small group library Id’s or a list of groups of order p” this functions checks isomorphism of the
associated modular group algebras using canonical forms for the quotients of the augmentation ideals A of FG. Here
I is either F, or s, if f is given. The parameter max is an integer or false that determines the maximal quotients
A/A™* to be checked (if false is given as input, then the quotients are enlarged until non-isomorphic quotients are
found or eventually the full augmentation ideal will be checked). The parameter start specifies which quotients A /A%
are precomputed. The parameter step determines in which steps the quotients are enlarged if necessary during the
isomorphism check. The output is a record containing three entries: bins contains all the groups, for which the non-
isomorphism of the associated modular group algebras could not be determined; splits contains all the groups, for
which the associated group algebras were determined to be non-isomorphic (and the first non-isomorphic quotient);
time contains the time used for the computation (in milliseconds).

For big algebras all of these function can use a lot of time and memory. To have a better idea on the progress of the
calculations one should set InfoModIsom to 1.
We first show how to study a fixed order:

gap> bins := BinsByGT(2,6);

[ [ 156, 158, 160 1, [ 1565, 157 1, [ 173, 176 1, [ 179, 180 1, [ 20, 22 ] ]

gap> List(bins, bin -> MIPSplitGroupsByAlgebras(2, 6, bin));

[ rec( bins := [ ], splits := [ [ 7, [ 156, 158, 160 ] 1 ], time := 2195 ),
rec( bins := [ ], splits := [ [ 7, [ 165, 157 ] 1 ], time := 1505 ),
rec( bins := [ ], splits := [ [ 7, [ 173, 176 ] 1 ], time := 3294 ),
rec( bins := [ ], splits := [ [ 7, [ 179, 180 ] 1 ], time := 3233 ),
rec( bins := [ ], splits := [ [ 4, [ 20, 221 ] 1, time := 160 ) 1]
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This shows that the Modular Isomorphism Problem has a positive answer for groups of order 64 for the field IF,. The
result means e.g. that the smallest quotients (of Loewy layers) such that the augmentation ideals A; and A, of the
groups algebras over [F, of the groups SmallGroup (64, 156) and SmallGroup(64,158) are not isomorphic are A; /A8
and A, /AS. These are A; /A3 and A, /A3 for the groups SmallGroup(64,20) and SmallGroup(64,22).

The following shows that the problem also has a positive answer for the group algebras of groups of order 64 over the
field F4. Note that for the groups SmallGroup(64,20) and SmallGroup(64,22) one has to consider deeper quotients
in this case.

gap> bins := BinsByGTAl1lFields(2,6);

[ [ 156, 168, 160 1, [ 165, 167 1, [ 173, 176 1, [ 179, 180 1, [ 104, 105 ],
[ 13, 141, [ 20, 221, [ 18, 19 1] 1]

gap> List(bins, bin -> MIPSplitGroupsByAlgebras(2, 6, bin, 2));

[ rec( bins := [ ], splits := [ [ 7, [ 1566, 158, 160 ] 1 1, time := 34833 ),

rec( bins := [ ], splits := [ [ 7, [ 1565, 167 1 1 1, time := 22479 ),

rec( bins := [ ], splits := [ [ 7, [ 173, 176 ] 1 ], time := 9806 ),

rec( bins := [ ], splits := [ [ 7, [ 179, 180 ] 1 ], time := 7819 ),

rec( bins := [ ], splits := [ [ 4, [ 104, 105 ] 1 ], time := 2226 ),

rec( bins := [ ], splits := [ [ 6, [ 13, 141 1 ], time := 707 ),

rec( bins := [ ], splits := [ [ 6, [ 20, 22 1 1 1, time := 3917 ),

rec( bins := [ ], splits := [ [ 6, [ 18, 191 1 1, time := 2891 ) ]

The other functions allow to study the problem for groups not coming from the library. The following groups are
studied in [GLM24].

R := SmallGroup(64, 19);
Q := SmallGroup(64, 18);

DR := DirectProduct(R,Q);

GDR := Generators0fGroup(DR);
z1 := GDR[3];

z2 := GDR[9];

N := Group(z1*z2~(-1));

G := DR/N;

DR := DirectProduct(Q,Q);
GDR := GeneratorsOfGroup(DR);

z1 := GDR[3];

z2 := GDR[9];

N := Group(z1*z2~(-1));
H := DR/N;

gap> MIPSplitGroupsByGroupTheoreticalIlnvariantsAllFields([G,H]);
[ [ Group([ f1, f2, f7, £3, f4, f10, f5, f6, f7, £8, f9, £10 1),
Group([ f1, f2, f7, £3, f4, f10, £f5, f6, f7, £8, £9, £10 1) ] 1]

# the groups can not be split over all fields by group-theoretical invariants

gap> MIPSplitGroupsByAlgebras([G,H]);
rec( bins := [ 1],
splits :=
L
L4,
[ Group([ f1, f2, f7, £3, f4, f10, f5, f6, f7, £f8, f9, f10 1),
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Group([ f1, f2, f7, £3, f4, f10, f5, f6, f7, £8, f9, £f10 1) 1 1
], time := 44473 )

# over the field of 2 elements it is enough to consider
# the 5-th power of the augmentation ideal

The program does not finish in a very reasonable time, if we run it over the field [F4, but we can still check that it is
not enough to factor out only the 5th power of the augmentation ideal in this case. One option is to use info level to
do this and the other to use MIPBinsSplit:

gap> SetInfolevel (InfoModIsom, 1);

gap> MIPSplitGroupsByAlgebras([G,H], 2);

#I Refine bin

#1 Weights yields bins [ [ 1, 2 ] ]

#I Layer 1 yields bins [ [ 1, 2 1 1]

#I layer 2 of dim 15 aut group has order 2961100800 * 270

#I cover is determined

#I dim(M) = 16 and dim(U) = 5
#I extended autos

#1 computed stabilizer

#I got quotient

#I induced autos

#I layer 2 of dim 15 aut group has order 2961100800 * 270
#I cover is determined

#I dim(M) = 16 and dim(U) = 5
#I extended autos

#I computed stabilizer

#I got quotient

#I induced autos

#1I Layer 2 yields bins [ [ 1, 2] 1]
#I layer 3 of dim 39 aut group has order 2937600 * 2788

#I cover is determined

#I dim(M) = 29 and dim(U) = 5
#I extended autos

#I computed stabilizer

#I got quotient

#I induced autos

#I layer 3 of dim 39 aut group has order 2937600 * 2788
#I cover is determined

#I dim(M) = 29 and dim(U) = 5
#I extended autos

#I computed stabilizer

#I got quotient

#I induced autos

#1 Layer 3 yields bins [ [ 1, 2] 1]
#I layer 4 of dim 81 aut group has order 2937600 * 27240

#I cover is determined

#I dim(M) = 51 and dim(U) = 9
#I extended autos

#I computed stabilizer

#I got quotient

#1 induced autos
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#I layer 4 of dim 81 aut group has order 2937600 * 27240

#I cover is determined

#I dim(M) = 51 and dim(U) = 9
#I extended autos

#I computed stabilizer

#I got quotient

#I induced autos

#1 Layer 4 yields bins [ [ 1, 2 ] 1]
#I layer 5 of dim 145 aut group has order 7200 * 27496

#I cover is determined

#I dim(M) = 73 and dim(U) = 9
#I extended autos

#1 computed stabilizer

#I got quotient

#I induced autos

#I layer 5 of dim 145 aut group has order 7200 * 27496
#I cover is determined

#I dim(M) = 73 and dim(U) = 9
#I extended autos

#1 computed stabilizer

#I got quotient

#I induced autos

#I Layer 5 yields bins [ [ 1, 2 1 1]
#I layer 6 of dim 231 aut group has order 7200 * 27800

#I cover is determined

#I dim(M) = 95 and dim(U) = 9
#I extended autos

#I computed stabilizer

#I got quotient

“CError, user interrupt in

AddRowVector( u, GetEntryTable( T, i, j ), v[i] * w[j]

); at /home/leo/gap-4.10.1/pkg/modisom-2.5.3/gap/tables/tables.gi:87 called from
MultByTable( Q, new[Q.wds[i] [1]], new([Q.wds[i] [2]]

) at /home/leo/gap-4.10.1/pkg/modisom-2.5.3/gap/autiso/induc.gi:135 called from
InduceAutoToQuot( Q, G.agAutos[i]

) at /home/leo/gap-4.10.1/pkg/modisom-2.5.3/gap/autiso/induc.gi:151 called from
InduceAutosToQuot( G, Q

); at /home/leo/gap-4.10.1/pkg/modisom-2.5.3/gap/autiso/autiso.gi:57 called from
ExtendCanoForm( tabs[i], j

); at /home/leo/gap-4.10.1/pkg/modisom-2.5.3/gap/grpalg/chkbins.gi:117 called from
MIPBinSplit( p, n, false, start, step, list, f

) at /home/leo/gap-4.10.1/pkg/modisom-2.5.3/gap/grpalg/chkbins.gi:177 called from

at *stdin*:39

you can ’return;’
brk> quit; # this was not progressing for several hours

gap> Size(G) = Size(H);
true
gap> Size(G)
true

2710;
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gap> MIPBinSplit(2, 10, 4, 4, 1, [G,H], 2);

#I Refine bin

#1 Weights yields bins [ [ 1, 2 ] ]

#I Layer 1 yields bins [ [ 1, 2 1 1]

#I layer 2 of dim 15 aut group has order 2961100800 * 270

#I cover is determined

#I dim(M) = 16 and dim(U) = 5
#I extended autos

#1 computed stabilizer

#I got quotient

#I induced autos

#I layer 2 of dim 15 aut group has order 2961100800 * 270
#I cover is determined

#I dim(M) = 16 and dim(U) = 5
#I extended autos

#I computed stabilizer

#I got quotient

#I induced autos

#1 Layer 2 yields bins [ [ 1, 2] ]
#I layer 3 of dim 39 aut group has order 2937600 * 2788

#I cover is determined

#I dim(M) = 29 and dim(U) = 5
#I extended autos

#I computed stabilizer

#I got quotient

#I induced autos

#I layer 3 of dim 39 aut group has order 2937600 * 2788
#I cover is determined

#I dim(M) = 29 and dim(U) = 5
#I extended autos

#I computed stabilizer

#I got quotient

#I induced autos

#1 Layer 3 yields bins [ [ 1, 2] 1]
#I layer 4 of dim 81 aut group has order 2937600 * 27240

#1 cover is determined
#I dim(M) = 51 and dim(U) = 9
#I extended autos
#I computed stabilizer
#I got quotient
#1 induced autos
#I layer 4 of dim 81 aut group has order 2937600 * 27240
#I cover is determined
#I dim(M) = 51 and dim(U) = 9
#I extended autos
#1 computed stabilizer
#I got quotient
#I induced autos
#I Layer 4 yields bins [ [ 1, 2 ] 1]
rec(
bins :=

[
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[ Group([ f1, f2, £f7, £3, f4, fi10, f5, f6, f7, £8, f9, £f10 1),
Group([ f1, f2, f7, £3, f4, fi10, f5, f6, f7, £8, f9, f10 1) 1 1,
splits := [ ], time := 9469981 )

4.2 Kernel size

An idea to study the Modular Isomorphism Problem is to define maps on certain quotients of the augmentation ideal
A and count the number of elements which map to 0 under this map. The map most typically used for this is a p-power
map A" /A" — A’ /A”‘pq'". This can be done in the package using the function

KernelSizePowerMap(T, n, m, 1, [f]) F

where T is a table as returned by ModlsomTable and n, m, [ are as just described and the calculation is performed over
the field IF,,. If f is not given, then it is set to 1. We can check for instance the first calculation in [HS06](Section 4.1).

gap> G := SmallGroup(64, 20);

<pc group of size 64 with 6 generators>
gap> H := SmallGroup(64, 22);

<pc group of size 64 with 6 generators>
gap> TG := ModIsomTable(G, 5);;

gap> TH := ModIsomTable(H, 5);;

gap> KernelSizePowerMap(TG, 1, 1, 2);

3

gap> KernelSizePowerMap(TH, 1, 1, 2);

1

This shows that the group algebras over [F, are not isomorphic. This argument does however not work over Fy:

gap> TG := ModIsomTable(G, 5, 2);;
gap> TH := ModIsomTable(H, 5, 2);;
gap> KernelSizePowerMap(TG, 1, 1, 2);
7

gap> KernelSizePowerMap(TH, 1, 1, 2);
7

4.3 The group theoretical invariants

We document here which group-theoretical invariants are used in BinsByGT and similar functions.
GroupInfo(G) F

This is an auxiliary function used in other group-theoretical invariants. If IdGroup is available in GAP for the order of
G it returns IdGroup(G). Otherwise it returns [Size(G), AbelianInvariants(G)).

We now describe the invariants in the order they appear in BinsByGT. First the isomorphism types of G/G’ and Z(G),
the abelianization and the center of G are used. These are very classical invariants [San85](Theorems 6.12, 6.7). We
next list the other functions which are applied, which are all small functions written for the package:

CenterDerivedInfo(G) F
calculates the isomorphism types of Z(G) N G’ and Z(G)/Z(G) N G’ [San85](Theorem 6.11).
SandlingInfo(G) F

calculates several invariants coming from the small groups algebra which was first used to study the Modular Isomor-
phism Problem in [San89]. Namely, for %(G) the i-th term of the lower central series of G it returns the Grouplnfo
for G/1(G)?y5(G) [San89], the Grouplnfo of G/ (G)"14(G), if G is 2-generated (mentioned in [Bag99], proved in
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[MM22]) and if the derived subgroup of G is elementary abelian and the Jennings series of G has length at most 2p,
it returns GrouplInfo for the Frattini subgroup of G [HS06](p.16). This function is not applied in BinsByGTAllFields
and its variations.

JenningsInfo(G) F

Denoting by D;(G) the i-th member of the Jennings series, this function returns Grouplnfo for the different quotients
Di(G)/D;41(G), Di(G)/D;12(G), Di(G)Dy;i11(G) for meaningful values of i (results [Jen41] [PS72] [RS83]) and if
p is odd also for G/D4(G) [Her07]. For BinsByGTAllFields and its variations only the quotients D;(G)/D;11(G) are
computed.

JenningsDerivedInfo(G) F
computes D;(G')/D;1(G’) for all i [San85](Lemma 6.26).
BaginskiInfo(G) F

For N = Cs(G'/®(G')), where ®(G) denotes the Frattini subgroup, if G/N is cyclic, it returns the Grouplnfo for
N/®(G') and G/P(N) [Bag99]. This function is not applied in BinsByGTAllFields and its variations.

BaginskiCarantiInfo(G) F

returns the nilpotency class of G/®(G’) [BC88](Proposition 2.1). This function is not applied in BinsByGTAllFields
and its variations.

NilpotencyClassInfo(G) F

returns the nilpotency class of G, when the exponent of G is p or the class equals 2 or the derived subgroup is cyclic
[BKO7].

Theorem41MS22(G) F

If p is odd, G is 2-generated, the nilpotency class of G is 3 and 3(G) has exponent p, it returns the isomorphism types
of 5(G) and 95(G) [MS22](Theorem 4.1). This function is not applied in BinsByGTAllFields and its variations.

CyclicDerivedInfo(G) F

If p is odd and G’ is cyclic this returns several invariants contained in [GLdRS23] [GLdR24]. Namely, the quotients
D;(C(G"))/Dis1(Cs(G")) for all i, the exponent of Cg(G'), the isomorphism type of Cs(G')/G’ and the Grouplnfo
for G/R(13(G)) and G/R;3(Cs(G')). Here R;(G) denotes the subgroup of G generated by the pi-th powers in G. If G
is additionally 2-generated, it also computes the Grouplnfo for C;(G’) and the type invariants of G (cf. [GLdRS23]
for the definition). For BinsByGTAllFields and its variations, the Grouplnfo for G/R(y5(G)) and G/R;(Cg(G')) is
not computed.

MaximalAbelianDirectFactor(G) F

computes the maximal abelian direct factor of G [GL24]. In BinsByGTAllFields and its variations it computes the
maximal elementary abelian direct factor instead [MSS23].

NormalSubgroupsInfo(G) F

computes some of the sections of G which are canonical following [GL24](Lemma 3.6). The starting canonical group
is the derived subgroup.

IsCoveredByTheory(G) F

determines, whether G belongs to certain classes for which the Modular Isomorphism Problem has been solved pos-
itively. Namely if G is a 2-group of maximal class [Bag92], p is odd, G < p’*!, G has a maximal abelian subgroup
and G is of maximal class [BC88], [G : Z(G)] = p? [Dre89], G is a 2-generated 2-group of nilpotency class 2
[BdR21], p is odd, G’ is elementary abelian, the nilpotency class of G is 3 and either Cs(G’) is a maximal subgroup
of G and abelian [MS22](Theorem 3.3) or a G is 3-generated and a certain condition holds on the commutator map
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modulo the second center of G [MS22](Theorem 3.5), G is a 2-group with cyclic center and dihedral central quotient
[MSS23], G is a 2-group of nilpotency class 2 with cyclic center [GLM24], p is odd, G’ is cyclic and R,(G/G’)
is cyclic [GLdR24](Proposition 3.7). For BinsByGTAllFields and its variations it only checks, if G is a 2-group of
maximal class, [G : Z(G)] = p? or G is a 2-group with cyclic center and dihedral central quotient.

DimensionTwoCohomology (G) F

computes the dimensions of the second cohomology group H*(FG, F) and of the second Hochschild cohomology
group HH?*(FG) = H*(FG, FG).

ConjugacyClassInfo(G) F
Computes the number of conjugacy classes which are p'-th powers, for all i (Kuelshammer) and the number of
conjugacy classes of p'-th powers which come from conjugacy classes of the same order (Parmenter-Polcino Mi-

lies) [HS06](Section 2.2) and the dimension of the first Hochschild cohomology group which equals the number
Yo log,(Cg(g)/®(Cs(g)) where the sum runs over all the conjugacy classes of G [HS06](Section 2.6).

SubgroupsInfo(G) F

Computes the number of conjugacy classes of maximal elementary abelian subgroups of rank 1,2,... The return is a
list of integers which contains this number for all ranks until the maximal possible. This is based on results of Quillen
[HSO06](Section 2.5).
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Nilpotent Quotients

This chapter contains a description of the nilpotent quotient algorithm for associative finitely presented algebras. We
refer to [Eicl1] for background on the algorithms used in this Chapter.

5.1 Computing nilpotent quotients

Let A be a finitely presented algebra in the GAP sense. The following function can be used to determine the class-c
nilpotent quotient of A. The quotient is described by a nilpotent table.

NilpotentQuotientOfFpAlgebra( A, c ) F

The output of this function is a nilpotent table with some additional entries. In particular, there is the additional entry
img which describes the images of the generators of A in the nilpotent table.

5.2 Example of nilpotent quotient computation

gap> F := FreeAssociativeAlgebra(GF(2), 2);;
gap> g := GeneratorsOfAlgebra(F);;

gap> r := [g[1]1"2, g[2]"2];;

gap> A := F/r;;

gap> NilpotentQuotientOfFpAlgebra(4,3);
rec( def := [ 1, 2 ], dim := 8, f1ld := GF(2),

img := [ <a GF2 vector of length 8>, <a GF2 vector of length 8> ],
mat := [ [ 1, [ 11, rnk := 2,
tab :=

[ [<a GF2 vector of length 8>, <a GF2 vector of length 8>,
0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2), Z(2)70, 0%Z(2), 0*Z(2), 0%Z(2) ]
0*Z(2), 0%Z(2), 0*%Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0*Z(2), 0%Z(2) 1]
0*Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0*Z(2), 0%Z(2) 1]
0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)°0 ],
0xZ(2), 0%Z(2), 0%xZ(2), 0%xZ(2), 0xZ(2), 0xZ(2), 0%xZ(2), 0xZ(2) ]
0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2) ]
[ <a GF2 vector of length 8>, <a GF2 vector of length 8>,
0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0*Z(2) ]
0%Z(2), 0%Z(2), 0*Z(2), 0%xZ(2), 0*Z(2), Z(2)"0, 0*Z(2), 0xZ(2) ]
0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)"0, 0%Z(2) ]
0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0%Z(2), 0xZ(2), 0*Z(2), 0%Z(2) ]
0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0*Z(2) ]
0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0xZ(2), 0%Z(2) 1 1,

]

]

]

]

]

L T e B s T s B e B |

0*Z(2), 0%Z(2), 0*Z(2), 0%Z(2), 0xZ(2), 0*Z(2), 0%Z(2), 0*Z(2)
0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), 0%Z(2), Z(2)°0, 0%Z(2), 0%*Z(2)
0*Z(2), 0%Z(2), 0*Z(2), 0%Z(2), Z(2)"0, 0%Z(2), 0*Z(2), 0%Z(2)
0xZ(2), 0%Z(2), 0xZ(2), 0%xZ(2), 0%xZ(2), 0*xZ(2), 0%xZ(2), 0xZ(2)

L O e T s T s Y s N s IO s Y s B e B |

2,171,011, 271,01,31,02,41,[02,51,T[1,¢6]

wds := [ ,,
(1,1,2,2,3,3,4,41)

wgs
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Relatively
free Algebras

As described in [Eic11], the nilpotent quotient algorithm also allows to determine certain relatively free algebras; that
is, algebras that are free within a variety.

6.1 Computing Kurosh Algebras
KuroshAlgebra( d, n, F ) F

determines a nilpotent table for the largest associative algebra on d generators over the field F so that every element a
of the algebra satisfies a” = 0.

ExpandExponentLaw( T, n )

suppose that T is the nilpotent table of a Kurosh algebra of exponent n defined over a prime field. This function
determines polynomials describing the corresponding Kurosh algebras over all fields with the same characteristic as
the prime field.

6.2 A Library of Kurosh Algebras

The package contains a library of Kurosh algebras. This can be accessed as follows.
KuroshAlgebraByLib(d, n, F) F

At current, the library contains the Kurosh algebras for n = 2, (d,n) = (2,3), (d,n) = (3,3) and F = Q or
|F| € {2,3,4}, (d,n) = (4,3) and F = Q or |F| € {2,3,4}, (d,n) = (2, )andF—Q0r|F|€{2349}
(d,n) = (2,5 and F = Qor |F| € {2,3,4,5,8,9}.

6.3 Example of accessing the library of Kurosh algebras

gap> KuroshAlgebra(2,2,Rationals);
. some printout ..

rec(bas := [ [1,0,0,01]1,[0,1, 1,01, [0,0,0,11,[0,1,0,01]1
, com := false, dim := 3, fld := Rationals, rnk := 2,
tab:=[[[o0,0,01, [0,0,-11, [0,0,011,
rro,o0,11,[0,0,01,[0,0,0111,wds :=[,, [2,111,
wgs := [ 1, 1, 21)
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This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before
“permutation group”.
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