{-# LANGUAGE CPP #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE RecordWildCards #-}
module PureSAT.SparseMaxHeap (
SparseHeap,
Weight,
sizeofSparseHeap,
newSparseHeap,
cloneSparseHeap,
memberSparseHeap,
insertSparseHeap,
deleteSparseHeap,
popSparseHeap,
popSparseHeap_,
elemsSparseHeap,
clearSparseHeap,
extendSparseHeap,
drainSparseHeap,
modifyWeightSparseHeap,
scaleWeightsSparseHeap,
) where
import Data.Bits
import Data.Primitive.PrimVar
import PureSAT.Base
import PureSAT.Utils
import PureSAT.Prim
type Weight = Word
data SparseHeap s = SH
{ forall s. SparseHeap s -> PrimVar s Int
size :: {-# UNPACK #-} !(PrimVar s Int)
, forall s. SparseHeap s -> MutablePrimArray s Int
dense :: {-# UNPACK #-} !(MutablePrimArray s Int)
, forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: {-# UNPACK #-} !(MutablePrimArray s Int)
, forall s. SparseHeap s -> MutablePrimArray s Weight
weight :: {-# UNPACK #-} !(MutablePrimArray s Word)
}
le :: Int -> Weight -> Int -> Weight -> Bool
le :: Int -> Weight -> Int -> Weight -> Bool
le Int
_ !Weight
u Int
_y !Weight
v = Weight
u Weight -> Weight -> Bool
forall a. Ord a => a -> a -> Bool
>= Weight
v
checking :: String -> SparseHeap s -> ST s a -> ST s a
{-# INLINE checking #-}
#ifdef CHECK_INVARIANTS
#define CHECK(tag,heap) _invariant tag heap
checking tag heap m = do
_invariant (tag ++ " pre") heap
x <- m
_invariant (tag ++ " post") heap
return x
#else
#define CHECK(tag,heap)
checking :: forall s a. String -> SparseHeap s -> ST s a -> ST s a
checking String
_tag SparseHeap s
_heap ST s a
m = ST s a
m
#endif
_invariant :: String -> SparseHeap s -> ST s ()
_invariant :: forall s. String -> SparseHeap s -> ST s ()
_invariant String
tag SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} = do
n <- PrimVar (PrimState (ST s)) Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> m a
readPrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size
capacity <- getSizeofMutablePrimArray dense
capacity1 <- getSizeofMutablePrimArray sparse
capacity2 <- getSizeofMutablePrimArray weight
unless (n <= capacity && capacity == capacity1 && capacity == capacity2) $
error $ "capacities " ++ show (n, capacity, capacity1, capacity2)
checkStructure capacity n 0
checkHeaps n 0
where
checkStructure :: Int -> Int -> Int -> ST s ()
checkStructure Int
capacity Int
n Int
i =
if Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n
then () -> ST s ()
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
else do
x <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
i
unless (x < capacity) $ error $ "x < capacity" ++ show (x, capacity)
j <- readPrimArray sparse x
unless (i == j) $ error $ "i == j" ++ show (i, j)
checkStructure capacity n (i + 1)
checkHeaps :: Int -> Int -> ST s ()
checkHeaps Int
n Int
i =
if Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n
then () -> ST s ()
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
else do
x <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
i
u <- readPrimArray weight x
heap n i x u
checkHeaps n (i + 1)
heap :: Int -> Int -> Int -> Weight -> ST s ()
heap Int
n Int
i Int
x Weight
u = do
let !j :: Int
j = Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
let !k :: Int
k = Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
2
Bool -> ST s () -> ST s ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n) (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
y <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
j
v <- readPrimArray weight y
unless (le x u y v) $ error $ "heap 1 " ++ tag ++ " " ++ show (n, i, x, u, j, y, v)
Bool -> ST s () -> ST s ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n) (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
z <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
k
w <- readPrimArray weight z
unless (le x u z w) $ error $ "heap 2 " ++ tag ++ " " ++ show (n, i, x, u, k, z, w)
newSparseHeap
:: Int
-> ST s (SparseHeap s)
newSparseHeap :: forall s. Int -> ST s (SparseHeap s)
newSparseHeap !Int
capacity' = do
let !capacity :: Int
capacity = Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
1024 Int
capacity'
size <- Int -> ST s (PrimVar (PrimState (ST s)) Int)
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
a -> m (PrimVar (PrimState m) a)
newPrimVar Int
0
dense <- newPrimArray capacity
sparse <- newPrimArray capacity
weight <- newPrimArray capacity
setPrimArray weight 0 capacity 0
return SH {..}
cloneSparseHeap :: SparseHeap s -> ST s (SparseHeap s)
cloneSparseHeap :: forall s. SparseHeap s -> ST s (SparseHeap s)
cloneSparseHeap SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} = do
capacity <- MutablePrimArray (PrimState (ST s)) Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
MutablePrimArray (PrimState m) a -> m Int
getSizeofMutablePrimArray MutablePrimArray s Int
MutablePrimArray (PrimState (ST s)) Int
dense
size' <- readPrimVar size >>= newPrimVar
dense' <- resizeMutablePrimArray dense capacity
sparse' <- resizeMutablePrimArray sparse capacity
weight' <- resizeMutablePrimArray weight capacity
copyMutablePrimArray dense' 0 dense 0 capacity
copyMutablePrimArray sparse' 0 sparse 0 capacity
copyMutablePrimArray weight' 0 weight 0 capacity
return SH { size = size', dense = dense', sparse = sparse', weight = weight' }
sizeofSparseHeap :: SparseHeap s -> ST s Int
sizeofSparseHeap :: forall s. SparseHeap s -> ST s Int
sizeofSparseHeap SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} = PrimVar (PrimState (ST s)) Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> m a
readPrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size
extendSparseHeap
:: Int
-> SparseHeap s
-> ST s (SparseHeap s)
extendSparseHeap :: forall s. Int -> SparseHeap s -> ST s (SparseHeap s)
extendSparseHeap Int
capacity1 heap :: SparseHeap s
heap@SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} = do
capacity2 <- MutablePrimArray (PrimState (ST s)) Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
MutablePrimArray (PrimState m) a -> m Int
getSizeofMutablePrimArray MutablePrimArray s Int
MutablePrimArray (PrimState (ST s)) Int
dense
let capacity = Int -> Int
nextPowerOf2 (Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
capacity2 Int
capacity1)
if capacity <= capacity2
then return heap
else do
dense' <- resizeMutablePrimArray dense capacity
sparse' <- resizeMutablePrimArray sparse capacity
weight' <- resizeMutablePrimArray weight capacity
setPrimArray weight' capacity2 (capacity - capacity2) 0
return SH { size, dense = dense', sparse = sparse', weight = weight' }
memberSparseHeap :: SparseHeap s -> Int -> ST s Bool
memberSparseHeap :: forall s. SparseHeap s -> Int -> ST s Bool
memberSparseHeap heap :: SparseHeap s
heap@SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} Int
x = String -> SparseHeap s -> ST s Bool -> ST s Bool
forall s a. String -> SparseHeap s -> ST s a -> ST s a
checking String
"member" SparseHeap s
heap (ST s Bool -> ST s Bool) -> ST s Bool -> ST s Bool
forall a b. (a -> b) -> a -> b
$ do
n <- PrimVar (PrimState (ST s)) Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> m a
readPrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size
i <- readPrimArray sparse x
if 0 <= i && i < n
then do
x' <- readPrimArray dense i
return (x' == x)
else return False
insertSparseHeap :: SparseHeap s -> Int -> ST s ()
insertSparseHeap :: forall s. SparseHeap s -> Int -> ST s ()
insertSparseHeap heap :: SparseHeap s
heap@SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} Int
x = String -> SparseHeap s -> ST s () -> ST s ()
forall s a. String -> SparseHeap s -> ST s a -> ST s a
checking String
"insert" SparseHeap s
heap (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
n <- PrimVar (PrimState (ST s)) Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> m a
readPrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size
i <- readPrimArray sparse x
if 0 <= i && i < n
then do
x' <- readPrimArray dense i
if x == x' then return () else insert n
else insert n
where
{-# INLINE insert #-}
insert :: Int -> ST s ()
insert !Int
n = do
MutablePrimArray s Int -> Int -> Int -> ST s ()
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> a -> ST s ()
writePrimArray MutablePrimArray s Int
dense Int
n Int
x
MutablePrimArray s Int -> Int -> Int -> ST s ()
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> a -> ST s ()
writePrimArray MutablePrimArray s Int
sparse Int
x Int
n
PrimVar (PrimState (ST s)) Int -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> a -> m ()
writePrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
u <- MutablePrimArray s Weight -> Int -> ST s Weight
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Weight
weight Int
x
swim (n + 1) dense sparse weight n x u
deleteSparseHeap :: SparseHeap s -> Int -> ST s ()
deleteSparseHeap :: forall s. SparseHeap s -> Int -> ST s ()
deleteSparseHeap heap :: SparseHeap s
heap@SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} Int
x = String -> SparseHeap s -> ST s () -> ST s ()
forall s a. String -> SparseHeap s -> ST s a -> ST s a
checking String
"delete" SparseHeap s
heap (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
n <- PrimVar (PrimState (ST s)) Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> m a
readPrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size
i <- readPrimArray sparse x
if 0 <= i && i < n
then do
x' <- readPrimArray dense i
if x == x' then delete i n else return ()
else return ()
where
{-# INLINE delete #-}
delete :: Int -> Int -> ST s ()
delete !Int
i !Int
n = do
let !n' :: Int
n' = Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
PrimVar (PrimState (ST s)) Int -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> a -> m ()
writePrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size Int
n'
if Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
n'
then () -> ST s ()
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
else Int -> Int -> ST s ()
swimSink Int
n' Int
i
swimSink :: Int -> Int -> ST s ()
swimSink Int
n Int
i
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0
= do
let !j :: Int
j = Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Int
1
y <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
j
swap' dense sparse i x j y
swimSink n j
| Bool
otherwise
= do
let j :: Int
j = Int
n
PrimVar (PrimState (ST s)) Int -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> a -> m ()
writePrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size Int
j
y <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
j
v <- readPrimArray weight y
swap' dense sparse 0 x j y
sink j dense sparse weight 0 y v
{-# INLINE swap' #-}
swap' :: MutablePrimArray s Int -> MutablePrimArray s Int -> Int -> Int -> Int -> Int -> ST s ()
swap' :: forall s.
MutablePrimArray s Int
-> MutablePrimArray s Int -> Int -> Int -> Int -> Int -> ST s ()
swap' !MutablePrimArray s Int
dense !MutablePrimArray s Int
sparse !Int
i !Int
x !Int
j !Int
y = do
MutablePrimArray s Int -> Int -> Int -> ST s ()
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> a -> ST s ()
writePrimArray MutablePrimArray s Int
dense Int
j Int
x
MutablePrimArray s Int -> Int -> Int -> ST s ()
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> a -> ST s ()
writePrimArray MutablePrimArray s Int
dense Int
i Int
y
MutablePrimArray s Int -> Int -> Int -> ST s ()
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> a -> ST s ()
writePrimArray MutablePrimArray s Int
sparse Int
x Int
j
MutablePrimArray s Int -> Int -> Int -> ST s ()
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> a -> ST s ()
writePrimArray MutablePrimArray s Int
sparse Int
y Int
i
sink :: Int -> MutablePrimArray s Int -> MutablePrimArray s Int -> MutablePrimArray s Weight -> Int -> Int -> Weight -> ST s ()
sink :: forall s.
Int
-> MutablePrimArray s Int
-> MutablePrimArray s Int
-> MutablePrimArray s Weight
-> Int
-> Int
-> Weight
-> ST s ()
sink !Int
n !MutablePrimArray s Int
dense !MutablePrimArray s Int
sparse !MutablePrimArray s Weight
weight !Int
i !Int
x !Weight
u
| Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n
= do
l <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
j
r <- readPrimArray dense k
v <- readPrimArray weight l
w <- readPrimArray weight r
if le x u l v
then do
if le x u r w
then return ()
else do
swap' dense sparse i x k r
sink n dense sparse weight k x u
else do
if le l v r w
then do
swap' dense sparse i x j l
sink n dense sparse weight j x u
else do
swap' dense sparse i x k r
sink n dense sparse weight k x u
| Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n
= do
l <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
j
v <- readPrimArray weight l
if le x u l v
then return ()
else do
swap' dense sparse i x j l
| Bool
otherwise
= () -> ST s ()
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
where
!j :: Int
j = Int
2 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
!k :: Int
k = Int
j Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
swim :: Int -> MutablePrimArray s Int -> MutablePrimArray s Int -> MutablePrimArray s Weight -> Int -> Int -> Weight -> ST s ()
swim :: forall s.
Int
-> MutablePrimArray s Int
-> MutablePrimArray s Int
-> MutablePrimArray s Weight
-> Int
-> Int
-> Weight
-> ST s ()
swim !Int
_n !MutablePrimArray s Int
dense !MutablePrimArray s Int
sparse !MutablePrimArray s Weight
weight !Int
i !Int
x !Weight
u
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
0
= () -> ST s ()
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise
= do
let !j :: Int
j = Int -> Int -> Int
forall a. Bits a => a -> Int -> a
unsafeShiftR (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Int
1
y <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
j
v <- readPrimArray weight y
unless (le y v x u) $ do
swap' dense sparse i x j y
swim _n dense sparse weight j x u
modifyWeightSparseHeap :: forall s. SparseHeap s -> Int -> (Weight -> Weight) -> ST s ()
modifyWeightSparseHeap :: forall s. SparseHeap s -> Int -> (Weight -> Weight) -> ST s ()
modifyWeightSparseHeap heap :: SparseHeap s
heap@SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} !Int
x Weight -> Weight
f = String -> SparseHeap s -> ST s () -> ST s ()
forall s a. String -> SparseHeap s -> ST s a -> ST s a
checking String
"modify" SparseHeap s
heap (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
u' <- MutablePrimArray s Weight -> Int -> ST s Weight
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Weight
weight Int
x
let !u = Weight -> Weight
f Weight
u'
writePrimArray weight x u
if u == u'
then return ()
else do
n <- readPrimVar size
i <- readPrimArray sparse x
if 0 <= i && i < n
then do
x' <- readPrimArray dense i
if x == x' then balance n i u u' else return ()
else return ()
where
balance :: Int -> Int -> Weight -> Weight -> ST s ()
balance :: Int -> Int -> Weight -> Weight -> ST s ()
balance !Int
n !Int
i !Weight
u !Weight
u'
| Weight
u Weight -> Weight -> Bool
forall a. Ord a => a -> a -> Bool
>= Weight
u'
= Int
-> MutablePrimArray s Int
-> MutablePrimArray s Int
-> MutablePrimArray s Weight
-> Int
-> Int
-> Weight
-> ST s ()
forall s.
Int
-> MutablePrimArray s Int
-> MutablePrimArray s Int
-> MutablePrimArray s Weight
-> Int
-> Int
-> Weight
-> ST s ()
swim Int
n MutablePrimArray s Int
dense MutablePrimArray s Int
sparse MutablePrimArray s Weight
weight Int
i Int
x Weight
u
| Bool
otherwise
= Int
-> MutablePrimArray s Int
-> MutablePrimArray s Int
-> MutablePrimArray s Weight
-> Int
-> Int
-> Weight
-> ST s ()
forall s.
Int
-> MutablePrimArray s Int
-> MutablePrimArray s Int
-> MutablePrimArray s Weight
-> Int
-> Int
-> Weight
-> ST s ()
sink Int
n MutablePrimArray s Int
dense MutablePrimArray s Int
sparse MutablePrimArray s Weight
weight Int
i Int
x Weight
u
{-# INLINE modifyWeightSparseHeap #-}
scaleWeightsSparseHeap :: forall s. SparseHeap s -> (Weight -> Weight) -> ST s ()
scaleWeightsSparseHeap :: forall s. SparseHeap s -> (Weight -> Weight) -> ST s ()
scaleWeightsSparseHeap heap :: SparseHeap s
heap@SH{PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} Weight -> Weight
f = String -> SparseHeap s -> ST s () -> ST s ()
forall s a. String -> SparseHeap s -> ST s a -> ST s a
checking String
"scale" SparseHeap s
heap (ST s () -> ST s ()) -> ST s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ do
!capacity <- MutablePrimArray (PrimState (ST s)) Weight -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
MutablePrimArray (PrimState m) a -> m Int
getSizeofMutablePrimArray MutablePrimArray s Weight
MutablePrimArray (PrimState (ST s)) Weight
weight
go capacity 0
where
go :: Int -> Int -> ST s ()
go !Int
n !Int
i
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
n = () -> ST s ()
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise = do
u <- MutablePrimArray s Weight -> Int -> ST s Weight
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Weight
weight Int
i
writePrimArray weight i (f u)
popSparseHeap :: SparseHeap s -> ST s (Maybe Int)
popSparseHeap :: forall s. SparseHeap s -> ST s (Maybe Int)
popSparseHeap SparseHeap s
heap = SparseHeap s
-> ST s (Maybe Int)
-> (Int -> ST s (Maybe Int))
-> ST s (Maybe Int)
forall s r. SparseHeap s -> ST s r -> (Int -> ST s r) -> ST s r
popSparseHeap_ SparseHeap s
heap (Maybe Int -> ST s (Maybe Int)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Int
forall a. Maybe a
Nothing) (Maybe Int -> ST s (Maybe Int)
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe Int -> ST s (Maybe Int))
-> (Int -> Maybe Int) -> Int -> ST s (Maybe Int)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Maybe Int
forall a. a -> Maybe a
Just)
{-# INLINE popSparseHeap_ #-}
popSparseHeap_ :: SparseHeap s -> ST s r -> (Int -> ST s r) -> ST s r
popSparseHeap_ :: forall s r. SparseHeap s -> ST s r -> (Int -> ST s r) -> ST s r
popSparseHeap_ _heap :: SparseHeap s
_heap@SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} ST s r
no Int -> ST s r
yes = do
CHECK("pop pre", _heap)
n <- PrimVar (PrimState (ST s)) Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> m a
readPrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size
if n <= 0
then no
else do
let !j = Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
writePrimVar size j
x <- readPrimArray dense 0
y <- readPrimArray dense j
v <- readPrimArray weight y
swap' dense sparse 0 x j y
sink j dense sparse weight 0 y v
CHECK("pop post", _heap)
yes x
clearSparseHeap :: SparseHeap s -> ST s ()
clearSparseHeap :: forall s. SparseHeap s -> ST s ()
clearSparseHeap SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} = do
PrimVar (PrimState (ST s)) Int -> Int -> ST s ()
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> a -> m ()
writePrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size Int
0
elemsSparseHeap :: SparseHeap s -> ST s [Int]
elemsSparseHeap :: forall s. SparseHeap s -> ST s [Int]
elemsSparseHeap SH {PrimVar s Int
MutablePrimArray s Int
MutablePrimArray s Weight
size :: forall s. SparseHeap s -> PrimVar s Int
dense :: forall s. SparseHeap s -> MutablePrimArray s Int
sparse :: forall s. SparseHeap s -> MutablePrimArray s Int
weight :: forall s. SparseHeap s -> MutablePrimArray s Weight
size :: PrimVar s Int
dense :: MutablePrimArray s Int
sparse :: MutablePrimArray s Int
weight :: MutablePrimArray s Weight
..} = do
n <- PrimVar (PrimState (ST s)) Int -> ST s Int
forall (m :: * -> *) a.
(PrimMonad m, Prim a) =>
PrimVar (PrimState m) a -> m a
readPrimVar PrimVar s Int
PrimVar (PrimState (ST s)) Int
size
go [] 0 n
where
go :: [Int] -> Int -> Int -> ST s [Int]
go ![Int]
acc !Int
i !Int
n
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n
= do
x <- MutablePrimArray s Int -> Int -> ST s Int
forall a s.
(HasCallStack, Prim a) =>
MutablePrimArray s a -> Int -> ST s a
readPrimArray MutablePrimArray s Int
dense Int
i
go (x : acc) (i + 1) n
| Bool
otherwise
= [Int] -> ST s [Int]
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ([Int] -> [Int]
forall a. [a] -> [a]
reverse [Int]
acc)
drainSparseHeap :: SparseHeap s -> ST s [Int]
drainSparseHeap :: forall s. SparseHeap s -> ST s [Int]
drainSparseHeap SparseHeap s
heap = ([Int] -> [Int]) -> ST s [Int]
go [Int] -> [Int]
forall a. a -> a
id where
go :: ([Int] -> [Int]) -> ST s [Int]
go [Int] -> [Int]
acc = SparseHeap s -> ST s [Int] -> (Int -> ST s [Int]) -> ST s [Int]
forall s r. SparseHeap s -> ST s r -> (Int -> ST s r) -> ST s r
popSparseHeap_ SparseHeap s
heap
([Int] -> ST s [Int]
forall a. a -> ST s a
forall (m :: * -> *) a. Monad m => a -> m a
return ([Int] -> [Int]
acc []))
(\Int
x -> ([Int] -> [Int]) -> ST s [Int]
go ([Int] -> [Int]
acc ([Int] -> [Int]) -> ([Int] -> [Int]) -> [Int] -> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int
x Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
:)))